汽车工程 ›› 2024, Vol. 46 ›› Issue (5): 816-829.doi: 10.19562/j.chinasae.qcgc.2024.05.008
• • 上一篇
董梒1,2,季学武2,陶书鑫2,蒋体通2,何祥坤3,王恒1,刘亚辉2()
收稿日期:
2023-08-29
修回日期:
2023-11-04
出版日期:
2024-05-25
发布日期:
2024-05-17
通讯作者:
刘亚辉
E-mail:liuyahui@tsinghua.edu.cn
Han Dong1,2,Xuewu Ji2,Shuxin Tao2,Titong Jiang2,Xiangkun He3,Heng Wang1,Yahui Liu2()
Received:
2023-08-29
Revised:
2023-11-04
Online:
2024-05-25
Published:
2024-05-17
Contact:
Yahui Liu
E-mail:liuyahui@tsinghua.edu.cn
摘要:
商用车转向系统的电控化是实现商用车节能化和智能化的必由之路,为此商用车转向系统从传统的液压助力转向系统发展到以电液耦合助力转向系统为代表的电控转向系统。本文将对商用车电控转向技术进行综述,从电控转向系统的典型构型、智能转向控制和功能安全设计3个方面对商用车电控转向技术的研究进行梳理,总结电控转向技术的重点研究领域和未来发展方向。梳理总结发现:(1) 在系统构型方面,商用车电控转向系统以电液耦合转向助力技术为主,着重于实现商用车智能转向功能,同时兼顾节能化需求;商用车电动助力转向系统是未来理想的电控转向技术方案。(2) 在智能控制方面,为了适应商用车智能化的发展,转向执行控制着重于解决液压系统所造成的非线性与时滞性问题以及轨迹跟随过程中的横向动力学控制难题;辅助驾驶功能着重于克服液压系统的非线性导致的转向力矩不连续以及人机控制权的分配;自动驾驶功能着重于提升安全性与燃油经济性。(3)在系统功能安全设计方面,商用车电控转向系统着重于设计符合功能安全标准的故障诊断与容错控制策略。
董梒,季学武,陶书鑫,蒋体通,何祥坤,王恒,刘亚辉. 商用车电控转向系统的发展现状与趋势[J]. 汽车工程, 2024, 46(5): 816-829.
Han Dong,Xuewu Ji,Shuxin Tao,Titong Jiang,Xiangkun He,Heng Wang,Yahui Liu. Development Status and Trends of Electronic Control Steering Systems for Commercial Vehicles[J]. Automotive Engineering, 2024, 46(5): 816-829.
表2
商用车转向控制策略主要算法"
控制内容 | 控制算法 | 特点 |
---|---|---|
转向执行 器控制 | 1. PID控制、模糊PID[ 2. 自适应控制[ 3. 前馈-反馈控制[ 4. 自抗扰控制[ | 补偿电液转向系统助力的非线性问题,使转向电机准确快速跟踪目标前轮转角。 |
1. PID控制[ 2. 线性整形控制[ 3. 积分滑模控制[ 4. 模糊神经网络[ | 克服液压系统响应延迟所造成的高时滞性问题,提高系统响应带宽。 | |
横向动力 学控制 | 1. 最优控制[ 2. 鲁棒控制[ 3. 模型预测控制[ 4. 底盘集成控制[ | 基于车辆动力学模型,根据车辆运动控制目标 ,利用控制算法计算参考前轮转角。 |
辅助驾驶 以及自动 驾驶 | 1.车道保持[ 2.车队队列控制[ 3.端到端自动驾驶[ | 根据车辆传感器信息,利用控制算法生成目标路径并跟踪。 |
1 | 国务院. 关于印发《智能汽车创新发展战略》的通知[EB/OL]. 2020. http://www.gov.cn/zhengce/zhengceku/2020-02/24/content_ 5482655.htm. |
The State Council. Notice on issuing the "intelligent vehicle innovation and development strategy" [EB/OL]. 2020. http://www.gov.cn/zhengce/zhengceku/2020-02/24/content_ 5482655.htm. | |
2 | 国务院. 国务院关于印发“十四五”节能减排综合工作方案的通知[EB/OL]. 2021.http://www.gov.cn/zhengce/content/2022-01/24/ content_5670202.htm. |
The State Council. Notice of the state council on issuing the comprehensive work plan for energy conservation and emission reduction during the 14th five year plan [EB/OL]. 2021.http://www.gov.cn/zhengce/content/2022-01/24/ content_5670202.htm. | |
3 | 李一染,权龙. 液压转向助力系统能耗特性的分析和比较[J]. 工程设计学报,2002(3):131-135. |
LI Y R, QUAN L. Analyzing and comparing energy dissipating character of hydraulic power steering system[J]. Journal of Engineering Design,2002(3):131-135. | |
4 | SONCHAL C P, GAJANKUSH J, KULKARNI A V,et al. Energy efficient hydraulic power assisted steering system (E 2 HPAS)[C]. SAE Paper 2012-01-0976. |
5 | DYER G P. Analysis of energy consumption for various power assisted steering systems[J]. SAE Transactions, 1997: 525-535. |
6 | YU L, XUAN W, MA L, et al. A new type of electro-hydraulic power steering system for heavy-duty commercial vehicles[C]. SAE Paper 2015-01-1502. |
7 | SHUAI C, JIAN S. Extended state observer based control scheme for the A-EHPS with load pressure estimation[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231(13): 1858-1873. |
8 | 国务院. 交通运输部关于印发《数字交通发展规划纲要》的通知[EB/OL]. 2019. http://www.gov.cn/xinwen/2019-07/28/content_ 5415971.htm. |
The State Council. Notice of the ministry of transport on issuing the "outline of digital transportation development plan"[EB/OL]. 2019. http://www.gov.cn/xinwen/2019-07/28/content_ 5415971.htm. | |
9 | ZF. Steering system [EB/OL].https://www.zf.com/products/en/cv/ products_76439.html. |
10 | ZF. Steering system [EB/OL]. https://www.zf.com/products/en/cv/ products_76440.html. |
11 | BOSCH. Products and services [A/OL]. https://www.bosch-mobility-solutions. com/en/products-and-services/commercial-vehicles/ steering-systems/hydraulic-andelectrohydraulic-steering-systems/. |
12 | 耿国庆,李浩,江浩斌,等.商用车电液耦合转向系统主动回正控制研究[J].汽车工程, 2021, 43(6):899-908. |
GENG G Q, LI H, JIANG H B, et al. Research on active returnability control for electro‐hydraulic coupling steering system of commercial vehicles[J]. Automotive Engineering 2021, 43(6):899-908. | |
13 | PARK J I, JEON K, YI K. The development of optimum control strategy for hybrid EPS system using Taguchi Method[C].2015 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2015: 761-766. |
14 | PARK J I, JEON K, YI K. An investigation on the energy-saving effect of a hybrid electric-power steering system for commercial vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(6): 1623-1648. |
15 | ZHAO W, ZHOU X, WANG C, et al. Energy analysis and optimization design of vehicle electro-hydraulic compound steering system[J]. Applied Energy, 2019, 255: 113713. |
16 | TAO S, DONG Q, LIU Y, et al. Research on energy saving of hybrid power steering system for heavy commercial vehicles[C].2021 China Automation Congress (CAC). IEEE, 2021: 4373-4378. |
17 | ZHAO W, ZHOU X, WANG C, et al. Energy analysis and optimization design of vehicle electro-hydraulic compound steering system[J]. Applied Energy, 2019, 255: 113713. |
18 | ZHAO W, LUAN Z, WANG C. Parametric optimization of novel electric–hydraulic hybrid steering system based on a shuffled particle swarm optimization algorithm[J]. Journal of Cleaner Production, 2018, 186: 865-876. |
19 | ZHAO W, LUAN Z, WANG C. Parameter optimization design of vehicle E-HHPS system based on an improved MOPSO algorithm[J]. Advances in Engineering Software, 2018, 123: 51-61. |
20 | ZHOU X, ZHAO W, WANG C. Performance analysis and multi-objective optimization design of vehicle electro-hydraulic compound steering system[J]. DEStech Transactions on Environment Energy and Earth Science, 2019. |
21 | Nexteer. Electric power steering and wire controlled steering [EB/OL]. https://www.chinese.nexteer.com/electric-power-steering/redundant-electric-power-steering/. |
22 | ZF. Press center [EB/OL]. https://press.zf.com/press/en/releases/ release_2948.html. |
23 | 徐闯. 一种电动助力转向器及商用车:201821582276.5 [P]. 2019-05-17[2023-10-30]. https://pss-system.cponline.cnipa.gov.cn/ documents/detail?prevPageTit=changgui. |
XU C. An electric power steering device and a commercial vehicle: 201821582276.5 [P]. 2019-05-17[2023-10-30]. https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui. | |
24 | 纪国庆,陈波,牛永春,等. 一种电动助力汽车转向器: 201510622920.1 [P]. 2021-10-01[2023-10-30].https://pss-system.cponline.cnipa.gov.cn/documents/detail?prevPageTit=changgui. |
JI G Q, CHEN B, NIU Y C, et al. An electric power-assisted vehicle steering gear: 201510622920.1 [P]. 2021-10-01[2023-10-30]. https://pss-system.cponline.cnipa.gov.cn/documents/detail? prevPageTit=changgui. | |
25 | NHILA A, WILLIAMS D, GUPTA V. Integration of lane keeping assistance with steering[J]. SAE International Journal of Commercial Vehicle, 2013, 6(2): 394-399. |
26 | SUBROTO R K, WANG C Z, LIAN K L. Four-wheel independent drive electric vehiclestability control using novel adaptive sliding mode control [J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5995-6006. |
27 | LIU Y, JI X, YANG K, et al. Finite-time optimized robust control with adaptive state estimation algorithm for autonomous heavy vehicle [J]. Mechanical System and Signal Processing, 2020, 139. |
28 | HUANG Z, NIE W, KOU S, et al. Rollover detection and control on the non-driven axles of trucks based on pulsed braking excitation [J]. Vehicle System Dynamics, 2018,56(12): 1864-1882. |
29 | SHI G, ZHOU Q, WANG S. A hierarchical strategy for the electro-hydraulic coupling steering system on commercial vehicles[J]. DEStech Transactions on Environment, Energy and Earth Sciences, 2019. |
30 | WANG S. Robust control of electro-hydraulic coupling power steering system for intelligent commercial vehicle with varying vehicle speed[C].2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE). IEEE, 2022: 540-544. |
31 | LIU C, WANG C, ZHAO W, et al. Displacement characteristics hierarchical control of electro-hydraulic compound steering for commercial vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(12): 6395-6409. |
32 | HUANG S, CAO W, QIAN R, et al. Front wheel angle tracking control research of intelligent heavy vehicle steering system [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(17): 3454-3467. |
33 | LOOF J, BESSELINK I, NIJMEIJER H. Implementation and validation of a three degrees of freedom steering-system model in a full vehicle model [J]. Vehicle System Dynamics,2019, 57(1): 86-107. |
34 | GXA B, MC A, XH C, et al. Path following control of tractor with an electro-hydraulic coupling steering system: layered multi-loop robust control architecture[J]. Biosystems Engineering, 2021, 209:282-299. |
35 | SHI Guobiao, ZHOU Qian, WANG Shuai, et al. High robust control strategy for electro-hydraulic hybrid steering system in unmanned mode[J].Transactions of the Chinese Society for Agricultural Machinery,2019,50(12):395-402. |
36 | ZHAO W Q, GAO K, WANG W B. Prevention of instability control of commercial vehicle based on electric-hydraulic coupling steering system[J]. Journal of Jilin University(Engineering and Technology Edition), 2018. |
37 | LI Y, YU J, ZHAO Z, et al. Robust control of EHCS of intelligent commercial vehicle under load change[J]. Journal of Sensors, 2021, 2021: 1-9. |
38 | WANG S. Robust control of electro-hydraulic coupling power steering system for intelligent commercial vehicle with varying vehicle speed[C].2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE). IEEE, 2022: 540-544. |
39 | 王帅,施国标,张洪泉,等.电液耦合转向系统转向盘转矩的自抗扰控制[J].汽车工程,2021,43(5):770-775,790. |
WANG S, SHI G B, ZHANG H Q, et al. Active disturbance rejection control of steering wheel torque in integrated electric⁃hydraulic steering system[J]. Automotive Engineering,2021,43(5):770-775,790. | |
40 | TAI M, HINGWE P, TOMIZUKA M. Modeling and control of steering system of heavy vehicles for automated highway systems[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(4): 609-618. |
41 | DU H, WEI J, FANG J.The design, simulation, and experiment of high-accuracy multi-axle electro-hydraulic control servo steering system[J].Advances in Mechanical Engineering, 2016, 8(10):8/10/1687814016674383. |
42 | TAI M, HINGWE P, TOMIZUKA M. Modeling and control of steering system of heavy vehicles for automated highway systems [J]. IEEE/ASME Transaction on Mechatronics, 2004, 9(4): 609-618. |
43 | 董晴,季学武,刘玉龙,等.基于LPV/H∞鲁棒控制的重型商用车自动循迹[J].清华大学学报(自然科学版),2022,62(3):438-446. |
DONG Q, JI X W, LIU Y L, et al.Robust LPV/H∞ control for automatic path tracking of heavy commercial vehicles[J].J Tsinghua Univ (Sci&Technol),2022,62(3):438-446. | |
44 | HAO L Y, H. PARK J, YE D.Fuzzy logic systems-based integral sliding mode fault-tolerant control for a class of uncertain non-linear systems[J].Control Theory & Applications Iet, 2016, 10(3):300-311. |
45 | DU H, WANG L, CHEN J, et al.Integral sliding mode tracking control for heavy vehicle electro-hydraulic power steering system[J].IEEE/ASME Transactions on Mechatronics, 2020, PP(99):1-1. |
46 | DU H, WANG L, CHEN J,et al.Adaptive fuzzy radial basis function neural network integral sliding mode tracking control for heavy vehicle electro-hydraulic power steering systems[J].Proceedings of the Institution of Mechanical Engineers Part D :Journal of Automobile Engineering, 2019, 234(2-3):095440701984637. |
47 | XU Guangfei, CHEN Meizhou, HE Xiangkun, et al. Path following control of tractor with an electro-hydraulic coupling steering system: layered multi-loop robust control architecture[J]. Biosystems Engineering, 2021, 209:282-299. |
48 | LOOF J, BESSELINK I, NIJMEIJER H. Component based modeling and validation of a steering system for a commercial vehicle[C]. IAVSD 2015. |
49 | WANG S, YIN C, GAO J. Lateral displacement control for agricultural tractor based on cascade control structure [J]. International Journal of Control, Automation and Systems. 2020, 18(9): 2375-2385. |
50 | LI L. Progress on vehicle dynamics stability control system[J]. Journal of Mechanical Engineering, 2013, 49(24). |
51 | ANTONOV S, FEHN A, KUGI A. Unscented Kalman filter for vehicle state estimation [J]. Vehicle System Dynamics, 2011, 49(9): 1497-520. |
52 | MILANI S,SAMIM ÜNLÜSOY Y, MARZBANI H,et al.Semitrailer steering control for improved articulated vehicle manoeuvrability and stability[J].Nonlinear Engineering, 2019, 8(1):568-581. |
53 | DENG Z, JIN Y, GAO W, et al. A closed-loop directional dynamics control with LQR active trailer steering for articulated heavy vehicle[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237(12):2741-2758. |
54 | BESSELINK I, ACHRIFI S, NIJMEIJER H.Lateral vehicle dynamics on rutted roads[J]. IAVSD 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. 2020. |
55 | MITOV A, KRALEV J, SLAVOV T, et al. Reference tracking LQG control of electrohydraulic servo system for mobile machines[J].2020 IEEE 10th International Conference on Intelligent Systems (IS). IEEE, 2020. |
56 | MITOV A, S LAVOV T, KRALEV J.Robustness analysis of an electrohydraulic steering control system based on the estimated uncertainty model[J].Information, 2021, 12. |
57 | MITOV A, SLAVOV T, KRALEV J, et al. Robust stability and performance investigation of electrohydraulic steering control system[C].International Conference on Future Access Enablers of Ubiquitous and Intelligent Infrastructures. Cham: Springer International Publishing, 2021: 386-400. |
58 | JI X, LIU Y, HE X, et al. Interactive control paradigm-based robust lateral stability controller design for autonomous automobile path tracking with uncertain disturbance: a dynamic game approach [J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 6906-6920. |
59 | MITOV A, KRALEV J, SLAVOV T, et al. Design of H-infinity tracking controller for application in autonomous steering of mobile machines[C]. 19th International Scientific Conference Engineering for Rural Development Proceedings. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2020. |
60 | EMHEISEN M, EMIRLER M T, OZKAN B. Lateral stability control of articulated heavy vehicles based on active steering system [J]. International Journal of Mechanical Engineering and Robotics Research,2022. |
61 | XU X, SU P, WANG F, et al. Coordinated control of dual-motor using the interval type-2 fuzzy logic in autonomous steering system of AGV[J]. International Journal of Fuzzy Systems, 2021, 23(4):1070-1086. |
62 | KIM J, YI K. Coordinated steering and braking control for roll stability of automated driving commercial vehicles[C].2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE, 2021: 2568-2574. |
63 | YAKUB F, ABU A, SARIP S, et al. Study of model predictive control for path-following autonomous ground vehicle control under crosswind effect [J]. Journal of Control Science and Engineering, 2016(5):1-18. |
64 | KAYACAN E, SAEYS W, RAMON H, et al. Experimental validation of linear and nonlinear MPC on an articulated unmanned ground vehicle [J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(6): 2023-2030. |
65 | KISSAI M, MOUTON X, MONSUEZ B, et al. Tapus, optimizing vehicle motion control for generating multiple sensations [C]. 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 2018: 928-935. |
66 | GUANG X, WUWEI C, LINFENG Z,et al.Integrated control of counterbalanced forklift truck chassis based on wavelet network dynamic inverse internal model control[J]. Journal of Mechanical Engineering, 2015. |
67 | KIM J, YI K. Coordinated steering and braking control for roll stability of automated driving commercial vehicles[C].2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE, 2021: 2568-2574. |
68 | CAPITO L, REDMILL K A. Methodology for hazard identification and mitigation strategies applied to an overtaking assistant ADAS[C]. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). 0. |
69 | HICKMAN J S, GUO F, CAMDEN M C,et al.Efficacy of roll stability control and lane departure warning systems using carrier-collected data[J].J Safety Res, 2015, 52(feb.):59-63.DOI:10.1016/j.jsr.2014.12.004. |
70 | WU C, CAO J, DU Y.Impacts of advanced driver assistance systems on commercial truck driver behaviour performance using naturalistic data[J].IET Intelligent Transport Systems, 2023. |
71 | 施国标,张洪泉,王帅,等.商用车电液复合转向系统的车道保持策略[J].中国公路学报,2021,34(9):101-110. |
SHI G B, ZHANG H Q, WANG S, et al.Lane-keeping assistance strategy for integrated electric-hydraulic steering system of commercial vehicles[J].China J.Highw.Transp.,2021,34(9):101-110. | |
72 | LI Y, NAN Y, HE J, et al. Study on lateral assisted control for commercial vehicles[C].2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2019: 567-572. |
73 | HAN X, ZHAO W, ZHENG H, et al. Research on lane-keeping control strategy for bus[J]. International Journal of Heavy Vehicle Systems, 2019, 26(3/4):291. |
74 | 隋新,刘春阳,詹坤,等.人机协同控制的车道保持辅助系统安全性能研究[J].中国机械工程, 2021, 32(16):8. |
SUI X, LIU C Y, ZHAN K, et al. Research on safety performance of lane keeping assist systems based on human-machine cooperative control[J]. China Mechanical Engineering, 2021, 32(16):8. | |
75 | LAZCANO A M R, NIU T, AKUTAIN X C, et al. MPC-based haptic shared steering system: a driver modeling approach for symbiotic driving[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(3): 1201-1211. |
76 | SAEEDNIA M, MENENDEZ M. A consensus-based algorithm for truck platooning[J]. IEEE Transactions on Intelligent Transportation Systems, 2027,18(2): 404-415. |
77 | HOEF S V D, JOHANSSON K H, DIMAROGONAS D V.Fuel-efficient en route formation of truck platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(1): 102-112 |
78 | GUO G, WANG Q.Fuel-efficient en route speed planning and tracking control of truck platoons[J].IEEE Transactions on Intelligent Transportation Systems, 2018, 20(8): 3091-3103. |
79 | KIM J.Truck platoon control considering heterogeneous vehicles[J].Applied Sciences, 2020, 10(15):5067. |
80 | ZHANG S, LU C, JIANG S,et al.An unmanned intelligent transportation scheduling system for open-pit mine vehicles based on 5G and big data[J].IEEE Access, 2020, PP(99):1-1. |
81 | GAO Y, AI Y, TIAN B,et al.Parallel end-to-end autonomous mining: an IoT-oriented approach[J].IEEE Internet of Things Journal, 2019, PP(99):1-1. |
82 | LEI Y, WANG Y, WU S, et al. A fuzzy logic-based adaptive dynamic window approach for path planning of automated driving mining truck[C].2021 IEEE International Conference on Mechatronics (ICM). IEEE, 2021: 1-6. |
83 | ZWEIGEL R, GEHRT J J, LIU S, et al. Optimal maneuvering and control of cooperative vehicles as case study for maritime applications within harbors[C].2019 18th European Control Conference (ECC). IEEE, 2019: 3022-3027. |
84 | ZWEIGEL R, GEHRT J J, LIU S,et al.Optimal maneuvering and control of cooperative vehicles as case study for maritime applications within harbors[C].European Control Conference,2019. |
85 | HUANG C, LI L. Architectural design and analysis of a steer-by-wire system in view of functional safety concept[J]. Reliability Engineering [J]. System Safety, 2020, 198:106822. |
86 | Road vehicles - functional safety - part 2: management of functional safety: ISO 26262-2:2018 [S]. Geneva, Switzerland: ISO, 2018. |
87 | RAJASIMHA R C, ARJUN V, CHANDRASHEKHAR H G. Supplemental FMEA for monitoring and system response of electronic power steering control system functional safety[C]. SAE Paper 2022 -28-0404. |
88 | UMEHABA Y, KAMOSHITA S, ISHIGURI K, et al. Development of electro-hydraulic actuator with fail-safe function for steering system[J]. Quarterly Report of Rtri, 2014, 55(3):131-137. |
89 | PRASANTH V, PAREKHJI R, AMRUTUR B. Exploiting application tolerance for functional safety[C].2021 IEEE International Test Conference (ITC). IEEE, 2021: 399-408. |
90 | XIONG H, WANG Z, WU G, et al. Steering actuator fault diagnosis for autonomous vehicle with an adaptive denoising residual network [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-13. |
91 | MANDERS E J, NARASIMHAN S, BISWAS G, et al. A combined qualitative/quantitative approach for fault isolation in continuous dynamic systems[J]. IFAC Proceedings Volumes, 2000, 33(11): 505-510. |
92 | WANG J, MIAO J, WANG J,et al.Fault diagnosis of electrohydraulic actuator based on multiple source signals: an experimental investigation[J].Neurocomputing, 2020, 417(17). |
93 | ZHU F, SHAN Y, TANG Y.Actuator and sensor fault detection and isolation for uncertain switched nonlinear system based on sliding mode observers[J].International Journal of Control Automation and Systems, 2021. |
94 | WEN L, LI X, GAO L. A transfer convolutional neural network for fault diagnosis based on ResNet-50[J].Neural Computing and Applications, 2019. |
95 | ZOU S, ZHAO W, WANG C,et al. Fault detection strategy of vehicle wheel angle signal via long short-term memory network and improved sequential probability ratio test[J].IEEE Sensors Journal, 2021(21-15). |
96 | FERDOWSI H, CAIJ, JAGANNATHAN S. Actuator and sensor fault detection and failure prediction for systems with multi-dimensional nonlinear partial differential equations[J].International Journal of Control, Automation and Systems, 2022, 20(3):789-802. |
97 | YIN S, GAO H, QIU J, et al. Descriptor reduced-order sliding mode observers design for switched systems with sensor and actuator faults[J]. Automatica, 2017, 76: 282-292. |
98 | LIU M, CAO X, SHI P. Fault estimation and tolerant control for fuzzy stochastic systems[J]. IEEETransactions on Fuzzy Systems, 2012, 21(2): 221-229. |
99 | ABBINK D A, MULDER M, VAN DER HELM F C T, et al. Measuring neuromuscular control dynamics during car following with continuous haptic feedback[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2011, 41(5): 1239-1249. |
100 | SANCHEZ O D, MARTINEZ-SOLTERO G, ALVAREZ J G,et al. Real-time neural classifiers for sensor faults in three phase induction motors[J].IEEE Access, 2023,11: 19657-19668. |
101 | PENG X, HOU S, LI Y. Study on a dual-motor driving electric power steering system for commercial vehicle[C]. 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2016. |
102 | LI Y, HE J, NAN Y, et al. A dual-motor electric power steering system for commercial vehicle[C]. IEEE Conference on Industrial Electronics and Applications. IEEE, 2019. |
103 | NOH Y, KIM W, JU L. The optimal current ratio control of redundant electric drive systems and diagnostic strategies for disagreement[J]. IEEE Access, 2021,9:32115-32130. |
104 | SHI G, QIAO P, SANG D, et al. Synchronous and fault-tolerance control for dual-motor steer-by-wire system of commercial vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023: 09544070231154961. |
105 | WANG X, WANG Z, XU Z,et al.Comprehensive diagnosis and tolerance strategies for electrical faults and sensor faults in dual three-phase PMSM drives[J].IEEE Transactions on Power Electronics, 2019, 34(7):6669-6684. |
106 | OH Y I, KIM J H, JUNG S Y, et al. Sensor fault tolerant algorithm for 7.2nm class spmsm applied electro-hydraulic power steering system for medium and heavy commercial vehicle[C]. 2018 3rd International Conference on Robotics and Automation Engineering (ICRAE), 2018. |
107 | ZOU S, ZHAO W, LIANG W,et al.Fault diagnosis and fault-tolerant compensation strategy for wheel angle sensor of steer-by-wire vehicle via extended Kalman filter[J].IEEE Sensors Journal, 2022(2):22. |
108 | KANG H, XIAO B, NI Y, et al. Sensor fault diagnosis and fault tolerant control for automated guided forklift[J]. IEEE Access, 2021, 9: 56191-56200. |
109 | ZHANG Z, XIAO B.Sensor fault diagnosis and fault tolerant control for forklift based on sliding mode theory[J].IEEE Access, 2020, PP(99):1-1.DOI:10.1109/ACCESS.2020.2991188. |
110 | SONG T, LEE J, OH K, et al.Dual-sliding mode approach for separated fault detection and tolerant control for functional safety of longitudinal autonomous driving[J].Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2020(6):095440702096262.DOI:10.1177/0954407020962627. |
111 | MCCLOY R, DE DONÁ J, SERON M. Fault-tolerant fusion-based MPC with sensor recovery for constrained LPV systems[J]. International Journal of Robust and Nonlinear Control, 2018, 28(11): 3589-3605. |
112 | LI J, ZHANG D, WANG Z. Novel MPC-based fault tolerant tracking control against sensor faults[J]. Asian J. Control, 2020, 22: 841-854. |
113 | ZHANG C, XU X, ZHANG X.Fault-tolerant learning-based MPC for unmanned ground vehicle[J].Springer, Singapore, 2022. |
114 | KUKUROWSKI N, PAZERA M, WITCZAK M, et al. Fault-tolerant tracking control for Takagi–Sugeno fuzzy systems under actuator and sensor faults[C].Advanced, Contemporary Control: Proceedings of KKA 2020—The 20th Polish Control Conference, Łódź, Poland, 2020. Cham: Springer International Publishing, 2020: 1434-1445. |
[1] | 陈君毅,刘镇源,杨雪珠,王天辰,李海霞,贾通,邢星宇,吴新政. 感知系统触发条件穿透率评估方法研究[J]. 汽车工程, 2024, 46(4): 577-587. |
[2] | 朱仲文,陆阳,王维志,李丞,江维海. 基于功能安全的整车控制器转矩监控策略研究[J]. 汽车工程, 2024, 46(3): 438-447. |
[3] | 吴思宇,于文浩,邢星宇,张玉新,李楚照,李雪轲,古昕昱,李云巍,马小涵,路伟,王政,郝圳茂,王红,李骏. 基于关键场景的预期功能安全双闭环测试验证方法[J]. 汽车工程, 2023, 45(9): 1583-1607. |
[4] | 白先旭,左瑜,李维汉,石琴,李楚照,赵树廉,陈炯. 自动紧急制动系统控制模块的SOTIF量化评价[J]. 汽车工程, 2023, 45(9): 1655-1665. |
[5] | 吴新政,邢星宇,刘力豪,沈勇,陈君毅. 基于错误注入的决策规划系统抗扰性测试与分析[J]. 汽车工程, 2023, 45(8): 1428-1437. |
[6] | 邵文博,李骏,张玉新,王红. 智能汽车预期功能安全保障关键技术[J]. 汽车工程, 2022, 44(9): 1289-1304. |
[7] | 段顺昌,白先旭,石琴,李维汉,何冠男. 汽车自动紧急制动系统控制策略的预期功能安全设计[J]. 汽车工程, 2022, 44(9): 1305-1317. |
[8] | 赵超,卜德旭,曹礼鹏,李克强,罗禹贡. 强降雨场景下自适应巡航控制系统的安全控制策略[J]. 汽车工程, 2022, 44(8): 1117-1125. |
[9] | 谈东奎,胡港君,朱波,金来,张捷. 考虑预期功能安全的智能汽车自动紧急制动系统[J]. 汽车工程, 2022, 44(6): 799-808. |
[10] | 陈浩,王红,李维汉,白先旭,陈炯,李楚照,石琴,孙骏. 基于行车安全场理论的预期功能安全场景风险评估[J]. 汽车工程, 2022, 44(11): 1636-1646. |
|