汽车工程 ›› 2024, Vol. 46 ›› Issue (9): 1564-1575.doi: 10.19562/j.chinasae.qcgc.2024.09.004

• • 上一篇    

基于图搜索与优化的动态非结构环境智能车辆轨迹规划

杨秀建(),白永瑞   

  1. 昆明理工大学交通工程学院,昆明 650500
  • 收稿日期:2024-03-16 修回日期:2024-04-14 出版日期:2024-09-25 发布日期:2024-09-19
  • 通讯作者: 杨秀建 E-mail:yangxiujian@kust.edu.cn
  • 基金资助:
    国家自然科学基金(52162046)

Trajectory Planning for Intelligent Vehicle in Dynamic Unstructured Environment Based on the Graph Search and Optimization Methods

Xiujian Yang(),Yongrui Bai   

  1. Faculty of Transportation Engineering,Kunming University of Science and Technology,Kunming 650500
  • Received:2024-03-16 Revised:2024-04-14 Online:2024-09-25 Published:2024-09-19
  • Contact: Xiujian Yang E-mail:yangxiujian@kust.edu.cn

摘要:

针对动态非结构环境下的智能车辆轨迹规划,提出了一种基于图搜索和优化的轨迹规划方法。首先,采用图搜索方法对智能车辆运动基元进行搜索,获取符合运动学特性的初始轨迹;然后,基于非线性模型预测控制方法对轨迹进行优化,以获得更平滑、更安全的轨迹。为在动态非结构环境下实现基元的快速且安全的拓展,提出了一种基元碰撞检测的方法。该方法通过障碍物膨胀和栅格离散运动基元,对非规则障碍物进行静态碰撞检测,引入速度障碍物概念,在速度空间对动态障碍物进行动态碰撞检测。在ROS/Gazebo环境下进行了算法仿真比较,并通过场地试验进行了测试评价。结果表明,相较于TEB算法,所提轨迹规划方法在满足计算实时性要求的同时,平均避障成功率提高了18%,展现出了更高的安全避障能力和可行性。

关键词: 智能车辆, 非结构环境, 动态环境, 避障

Abstract:

A trajectory planning method based on graph search and optimization is proposed for intelligent vehicle trajectory planning in dynamic unstructured environments. Firstly, the graph search method is employed to search for motion primitives for intelligent vehicles to obtain initial trajectories that conform to kinematic characteristics. Then, based on nonlinear model predictive control methods, the trajectory is optimized to obtain smoother and safer trajectories. In order to achieve rapid and secure expansion of primitives in dynamic unstructured environments, a method for primitive collision detection is proposed. This method uses obstacle expansion and grid discrete motion elements to perform static collision detection on irregular obstacles, and introduces in the concept of velocity obstacles to perform dynamic collision detection on dynamic obstacles in velocity space. The proposed algorithm is compared by simulations in ROS/Gazebo environment, and is evaluated by field tests. The results show that compared to the TEB algorithm, the proposed trajectory planning method improves the average obstacle avoidance success rate by 18% while meeting the real-time computing requirements, demonstrating higher safety obstacle avoidance ability and feasibility.

Key words: intelligent vehicle, unstructured environment, dynamic environment, obstacle avoidance