汽车工程 ›› 2024, Vol. 46 ›› Issue (11): 2110-2121.doi: 10.19562/j.chinasae.qcgc.2024.11.017
收稿日期:
2024-04-22
修回日期:
2024-06-20
出版日期:
2024-11-25
发布日期:
2024-11-22
通讯作者:
陈轶嵩
E-mail:chenyisong_1988@163.com
基金资助:
Geng Luo,Chengpeng Chai,Zhaofei Zhu,Yisong Chen()
Received:
2024-04-22
Revised:
2024-06-20
Online:
2024-11-25
Published:
2024-11-22
Contact:
Yisong Chen
E-mail:chenyisong_1988@163.com
摘要:
蜂窝材料具有轻质、高比吸能等优良的能量吸收性能,被广泛应用于各类吸能防护结构,本文基于Voronoi图形和3D打印技术,设计并制备了新型梯度随机蜂窝夹芯结构,建立其三点弯曲加载的有限元模型,并进行了试验验证,进而基于数值模型开展了其耐撞性研究以及多目标优化设计,研究结果表明,均匀随机蜂窝夹芯结构中,较低随机度的蜂窝夹芯结构具有更好的能量吸收特性,壁厚增大增加比吸能的同时因其细观变形模式由塑性铰主导而具有较大的承载波动系数,相对密度一致时,胞元尺寸不同的随机蜂窝夹芯结构的比吸能相差不大,胞元尺寸的减小使变形过程更加平稳而降低了承载波动系数;对于胞元尺寸梯度、壁厚梯度随机蜂窝夹芯结构,正梯度的引入增大了加载端强度,使得吸能指标提高;基于非支配排序速传算法(non-dominated sorting genetic algorthm-II,NSGA-II),对正梯度随机蜂窝夹芯结构进行多目标优化,得到的优化结果相比于未进行优化设计的均匀随机蜂窝夹芯结构,比吸能提高了33.9%。
罗耿,柴成鹏,祝召飞,陈轶嵩. 3D打印梯度随机蜂窝夹芯结构耐撞性研究与多目标优化设计[J]. 汽车工程, 2024, 46(11): 2110-2121.
Geng Luo,Chengpeng Chai,Zhaofei Zhu,Yisong Chen. Research on the Crashworthiness of 3D Printing Gradient Random Honeycomb Sandwich Structure and Multi-objective Optimization Design[J]. Automotive Engineering, 2024, 46(11): 2110-2121.
表5
各样本点相应模型参数与输出"
编号 | n | t/mm | γ | IPCF/N | SEA/(J·g-1) |
---|---|---|---|---|---|
1 | 100 | 0.4 | 0.2 | 134.573 | 0.171 |
2 | 100 | 0.6 | 0.4 | 335.685 | 0.289 |
3 | 100 | 0.8 | 0.6 | 596.148 | 0.473 |
4 | 100 | 1.2 | 0.8 | 1 369.74 | 0.853 |
5 | 140 | 0.4 | 0.4 | 227.096 | 0.204 |
6 | 140 | 0.6 | 0.2 | 396.278 | 0.388 |
7 | 140 | 0.8 | 0.8 | 975.801 | 0.731 |
8 | 140 | 1.2 | 0.6 | 1 561.64 | 1.036 |
9 | 180 | 0.4 | 0.6 | 360.213 | 0.326 |
10 | 180 | 0.6 | 0.8 | 731.563 | 0.602 |
11 | 180 | 0.8 | 0.2 | 1 046.55 | 0.715 |
12 | 180 | 1.2 | 0.4 | 2 966.34 | 1.157 |
13 | 220 | 0.4 | 0.8 | 358.486 | 0.383 |
14 | 220 | 0.6 | 0.6 | 846.727 | 0.623 |
15 | 220 | 0.8 | 0.4 | 1 365.03 | 0.871 |
16 | 220 | 1.2 | 0.8 | 3 497.39 | 1.472 |
1 | WANG X, WEI K, TAO Y, et al. Thermal protection system integrating graded insulation materials and multilayer ceramic matrix composite cellular sandwich panels[J]. Composite Structures, 2019, 209:523-534. |
2 | LIU J, WANG Z, HUI D. Blast resistance and parametric study of sandwich structure consisting of honeycomb core filled with circular metallic tubes[J]. Composites Part B: Engineering, 2018, 145:261-269. |
3 | 崔岸,刘芳芳,张晗,等.车身泡沫填充铝合金波纹夹芯板结构性能分析与优化[J]. 汽车工程,2019,41(10):1221-1227. |
CUI A, LIU F F, ZHANG H, et al. Analysis and optimization of structural performance of body foam-filled aluminum alloy corrugated sandwich panel[J]. Automotive Engineering,2019,41(10):1221-1227. | |
4 | OLIVEIRA P R, NAY M, PANZERA T H,et al. Bio-based/green sandwich structures: a review[J].Thin-Walled Structures, 2022,177: 109426. |
5 | BIRMAN V, KARDOMATEAS G A. Review of current trends in research and applications of sandwich structures[J].Composites Part B: Engineering, 2018,142: 221-240. |
6 | CUI C, WANG Z, ZHOU W, et al. Branch point algorithm for structural irregularity determination of honeycomb[J]. Composites Part B: Engineering, 2019,162:323-330. |
7 | WANG Z, LI Z, SHI C, et al. Mechanical performance of vertex-based hierarchical vs square thin-walled multi-cell structure[J]. Thin-Walled Structures, 2019, 134: 102-110. |
8 | 崔岸,徐晓倩,孙文龙,等.基于耐撞性的碳纤维/聚丙烯泡沫夹芯板结构优化研究[J]. 汽车工程,2020,42(6):840-846. |
CUI A, XU X Q, SUN W L, et al. Structural optimization of carbon fiber/polypropylene foam sandwich panel based on crashworthiness[J]. Automotive Engineering,2020,42(6):840-846. | |
9 | 贺良国,赵杰,谷先广.基于多胞结构的车身前端轻量化和耐撞性设计[J]. 汽车工程,2020,42(6):832-839. |
HE L G, ZHAO J, GU X G. Design of lightweight and crashworthiness of body front end based on multi-cell structure[J]. Automotive Engineering,2020,42(6):832-839. | |
10 | GUO H, YUAN H, ZHANG J, et al. Review of sandwich structures under impact loadings: experimental, numerical and theoretical analysis[J]. Thin-Walled Structures, 2023, 111541. |
11 | WANG S, LI S, ZHAI Z, et al. Bending performance and failure modes of sinusoidal corrugated sandwich panels fabricated using stereolithography technology: effects of geometric parameters[J]. Engineering Failure Analysis, 2024, 158: 107987. |
12 | ZHANG C, LU F, WU J, et al. Research on three-point bending performance of hollow-core rod pyramidal gradient lattice sandwich beam[C].Structures. Elsevier, 2023, 57: 105165. |
13 | LUO G, CHAI C, CHEN Y, et al. Investigations on the quasi-static/dynamic mechanical properties of 3D printed random honeycombs under in-plane compression[J]. Thin-Walled Structures, 2023, 190: 110931. |
14 | XIA F, DURANDET Y, TAN P J, et al. Three-point bending performance of sandwich panels with various types of cores[J]. Thin-Walled Structures, 2022, 179: 109723. |
15 | 张志飞,金玮,徐中明,等.面向行人下肢保护的蜂窝铝吸能结构优化[J].汽车工程,2019,41(8):927-933. |
ZHANG Z F, JIN W, XU Z M, et al. Optimization of honeycomb aluminum energy-absorbing structure for pedestrian lower limb protection[J].Automotive Engineering,2019,41(8):927-933. | |
16 | ZHANG J, YUAN H, LI J, et al. Dynamic response of multilayer curved aluminum honeycomb sandwich beams under low-velocity impact[J]. Thin-Walled Structures, 2022, 177: 109446. |
17 | ZHAO J, CUI Z, WANG S, et al. Flexural response of additively manufactured honeycomb sandwich structures with continuous density-gradient variations[J]. Thin-Walled Structures, 2024, 197: 111642. |
18 | LU C, CAO Y, WU W, et al. A novel design method of circular sandwich panels with gradient continuous controllable core based on space-filling design and 2D-voronoi method[J]. Materials Today Communications, 2023, 36: 106750. |
19 | ZHU H X, THORPE S M, WINDLE A H, et al. The effect of cell irregularity on the high strain compression of 2D voronoi honeycombs[J]. International Journal of Solids and Structures, 2006, 43(5):1061-1078. |
20 | Standard test method for tensile properties of plastics:ASTM D638-22[S].2022. |
21 | YUAN Y, ZHANG Y, RUAN D, et al. Deformation and failure of additively manufactured voronoi foams under dynamic compressive loadings[J]. Engineering Structures,2023, 284:115954. |
[1] | 赵树恩,王盛,冷姚. 智能汽车轨迹跟踪多目标显式模型预测控制[J]. 汽车工程, 2024, 46(5): 784-794. |
[2] | 熊萌,张栋,尤国建,孙添飞,盛凯,魏学哲. 电动汽车无线充电高效高利用率磁芯的多目标优化设计[J]. 汽车工程, 2023, 45(9): 1740-1752. |
[3] | 邹渊,孙文景,张旭东,温雅,曹万科,张兆龙. 面向时间敏感网络的车载以太网网络架构多目标优化[J]. 汽车工程, 2023, 45(5): 746-758. |
[4] | 段志勇,马菁. 锂电池热管-液冷板式冷却结构多目标优化[J]. 汽车工程, 2023, 45(11): 2047-2057. |
[5] | 李捷,吴晓东,许敏,刘永刚. 基于强化学习的城市场景多目标生态驾驶策略[J]. 汽车工程, 2023, 45(10): 1791-1802. |
[6] | 周兴凯,窦祖芳,杨喜娟,杨乔礼. 基于IEEE 802.11p的自适应主次窗口退避机制及验证[J]. 汽车工程, 2022, 44(12): 1856-1865. |
[7] | 刘细平,伏结盛,杜隆鑫,郭高胜,朱文健. 电动汽车用双层永磁体IPMSM解析与优化设计[J]. 汽车工程, 2021, 43(8): 1128-1135. |
[8] | 鲁若宇,胡杰,陈瑞楠,徐文才,曹恺. 基于DMPC的智能汽车协同式自适应巡航控制[J]. 汽车工程, 2021, 43(8): 1177-1186. |
[9] | 蔡英凤,吕志军,孙晓强,王海,刘擎超,陈龙,袁朝春. 基于并线行为识别的自适应巡航控制方法[J]. 汽车工程, 2021, 43(7): 1077-1087. |
[10] | 解少博,罗慧冉,张乾坤,张康康. 智能网联混合动力车辆速度规划的多目标协同控制研究[J]. 汽车工程, 2021, 43(7): 953-961. |
[11] | 洪亮,刘刚,葛如海. 基于12岁儿童损伤阈值的主动式安全气囊多目标优化[J]. 汽车工程, 2021, 43(6): 861-869. |
[12] | 张韦,解礼兵,陈朝辉,周马益,陈永,范吉文,陶丽. 进气道螺旋段关键结构参数多目标优化设计[J]. 汽车工程, 2021, 43(3): 337-344. |
[13] | 张志飞,胡桐铜,范维春,王长金,黄瑞文. 基于拉拽安全性能的汽车座椅优化设计[J]. 汽车工程, 2021, 43(2): 218-225. |
[14] | 陈静,徐森,刘震,唐傲天,吕伟. 基于碰撞安全性的铝合金吸能盒轻量优化[J]. 汽车工程, 2021, 43(2): 241-247. |
[15] | 王普毅,白影春,林程,武振江,王保华. 基于EGO加点策略的动力电池包多目标优化[J]. 汽车工程, 2021, 43(10): 1457-1465. |
|