汽车工程 ›› 2023, Vol. 45 ›› Issue (4): 527-540.doi: 10.19562/j.chinasae.qcgc.2023.04.001

所属专题: 智能网联汽车技术专题-规划&决策2023年

• •    下一篇

基于强化学习的自动驾驶决策研究综述

金立生,韩广德(),谢宪毅,郭柏苍,刘国峰,朱文涛   

  1. 燕山大学车辆与能源学院,秦皇岛  066004
  • 收稿日期:2022-10-10 修回日期:2022-11-15 出版日期:2023-04-25 发布日期:2023-04-19
  • 通讯作者: 韩广德 E-mail:hangd@stumail.ysu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB3202300);国家自然科学基金(52072333)

Review of Autonomous Driving Decision-Making Research Based on Reinforcement Learning

Lisheng Jin,Guangde Han(),Xianyi Xie,Baicang Guo,Guofeng Liu,Wentao Zhu   

  1. School of Vehicle and Energy,Yanshan University,Qinhuangdao  066004
  • Received:2022-10-10 Revised:2022-11-15 Online:2023-04-25 Published:2023-04-19
  • Contact: Guangde Han E-mail:hangd@stumail.ysu.edu.cn

摘要:

强化学习的发展推动了自动驾驶决策技术的进步,智能决策技术已成为自动驾驶领域高度关注的要点问题。本文以强化学习算法发展为主线,综述该算法在单车自动驾驶决策领域的深入应用。对强化学习传统算法、经典算法和前沿算法从基本原理和理论建模等方面进行归纳总结与对比分析。针对不同场景的自动驾驶决策方法分类,分析环境状态可观测性对建模的影响,重点阐述了不同层次强化学习典型算法的应用技术路线,并对自动驾驶决策方法提出研究展望,以期为自动驾驶决策方案研究提供有益参考。

关键词: 自动驾驶, 决策算法, 强化学习, 前沿发展

Abstract:

Decision-making technology of autonomous vehicle is promoted by the development of reinforcement learning, and intelligent decision-making technology has become a key issue of high concern in the field of autonomous driving. Taking the development of reinforcement learning algorithm as the main line in this paper, the in-depth application of this algorithm in the field of single-car autonomous driving decision-making is summarized. Traditional reinforcement learning algorithms, classic algorithms and frontier algorithms are summarized and compared from the aspect of basic principles and theoretical modeling methods. According to the classification of autonomous driving decision-making methods in different scenarios, the impact of environmental state observability on modeling is analyzed, and the application technology routes of typical reinforcement learning algorithms at different levels are emphasized. The research prospects for the autonomous driving decision-making method are proposed in order to provide a useful reference for the research of autonomous driving decision-making.

Key words: autonomous driving, decision-making algorithm, reinforcement learning, frontier development