汽车工程 ›› 2025, Vol. 47 ›› Issue (5): 851-858.doi: 10.19562/j.chinasae.qcgc.2025.05.006

• • 上一篇    下一篇

融合滑移率校正的智能车辆定位方法

熊璐1,朱佳琪1,陈梦源1,李子尧1,舒强2,卓桂荣1()   

  1. 1.同济大学汽车学院,上海 201804
    2.上海同驭汽车科技有限公司,上海 201804
  • 收稿日期:2024-12-13 修回日期:2025-02-11 出版日期:2025-05-25 发布日期:2025-05-20
  • 通讯作者: 卓桂荣 E-mail:zhuoguirong@tongji.edu.cn
  • 基金资助:
    国家自然科学基金(52325212);国家重点研发计划(2022YFE0117100);上海同驭汽车科技有限公司智能汽车线控底盘联合实验室资助

Positioning Method Based on Slip Ratio Compensation for Intelligent Vehicles

Lu Xiong1,Jiaqi Zhu1,Mengyuan Chen1,Ziyao Li1,Qiang Shu2,Guirong Zhuo1()   

  1. 1.School of Automotive Studies,Tongji University,Shanghai 201804
    2.Shanghai Tongyu Automotive Technology Co. ,Ltd. ,Shanghai 201804
  • Received:2024-12-13 Revised:2025-02-11 Online:2025-05-25 Published:2025-05-20
  • Contact: Guirong Zhuo E-mail:zhuoguirong@tongji.edu.cn

摘要:

准确可靠的车辆位姿估计是智能车辆决策规划、运动控制等模块的重要输入。本文提出一种融合智能车辆轮胎滑移率在线估计及校正的定位算法,可以在全球导航卫星系统(GNSS)中断期间显著增强惯性导航系统(INS)/轮速传感器(WSS)的融合定位精度。首先,利用车辆加速度和轮速数据,提出了一种针对不同驾驶条件的滑移率实时估计算法,以准确地对轮速信息进行滑移率校正;随后,基于误差状态卡尔曼滤波对GNSS、IMU和校正后的轮速信息进行融合,实现准确可靠的车辆位姿估计。实车实验结果表明,在GNSS中断期间,速度均方根误差最高提升30%,平均水平位置误差里程比可达1.68‰。

关键词: 智能汽车, 融合定位, 滑移率估计, 误差状态卡尔曼滤波

Abstract:

Accurate and reliable vehicle pose estimation is a critical input for intelligent vehicle decision, planning and motion control modules. In this paper, a positioning algorithm that integrates real-time slip ratio estimation and compensation for intelligent vehicles is proposed, which significantly enhances the fusion positioning accuracy of the Inertial Navigation System (INS) and Wheel Speed Sensor (WSS) during Global Navigation Satellite System (GNSS) interruption. Firstly, a real-time slip ratio estimation algorithm is proposed to correct the wheel speed information for different driving conditions, which uses vehicle acceleration and wheel speed data. Then, based on error-state Kalman filter (ESKF), the corrected wheel speed data is fused with GNSS and Inertial Measurement Unit (IMU) information to achieve accurate and reliable vehicle pose estimation. The results of the real-vehicle experiments show that during GNSS interruption, the Root Mean Square Error (RMSE) of velocity improves by up to 30% and the average horizontal position error mileage ratio reaches 1.68‰.

Key words: intelligent vehicle, fusion positioning, slip ratio estimation, error-state Kalman filter