| 1 |
LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J/OL]. Journal of Power Sources, 2013, 226: 272-288.
|
| 2 |
JIANG Y, JIANG J, ZHANG C, et al. State of health estimation of second-life LiFePO4 batteries for energy storage applications[J/OL]. Journal of Cleaner Production, 2018, 205: 754-762.
|
| 3 |
CUSENZA M A, GUARINO F, LONGO S, et al. Reuse of electric vehicle batteries in buildings: an integrated load match analysis and life cycle assessment approach[J/OL]. Energy and Buildings, 2019, 186: 339-354.
|
| 4 |
HUANG Z, XIE Z, ZHANG C, et al. Modeling and multi-objective optimization of a stand-alone PV-hydrogen-retired EV battery hybrid energy system[J/OL]. Energy Conversion and Management, 2019, 181: 80-92.
|
| 5 |
HUA Y, ZHOU S, HUANG Y, et al. Sustainable value chain of retired lithium-ion batteries for electric vehicles[J/OL]. Journal of Power Sources, 2020, 478: 228753.
|
| 6 |
NEUBAUER J, PESARAN A. The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications[J/OL]. Journal of Power Sources, 2011, 196(23): 10351-10358.
|
| 7 |
LAI X, HUANG Y, GU H, et al. Turning waste into wealth: a systematic review on echelon utilization and material recycling of retired lithium-ion batteries[J/OL]. Energy Storage Materials, 2021, 40: 96-123.
|
| 8 |
XU Z, WANG J, LUND P D, et al. A novel clustering algorithm for grouping and cascade utilization of retired Li-ion batteries[J/OL]. Journal of Energy Storage, 2020, 29: 101303.
|
| 9 |
PENG S, SUN Y, LIU D, et al. State of health estimation of lithium-ion batteries based on multi-health features extraction and improved long short-term memory neural network [J/OL]. Energy, 2023, 282: 128956.
|
| 10 |
LIN M, WU J, ZOU J, et al. Retired battery screening based on Markov transition field and swin transformer[J/OL]. IEEE Transactions on Transportation Electrification, 2024, 10(2): 4217-4227.
|
| 11 |
陈琳, 何熳平, 吴淑孝, 等. 基于自适应模糊C-均值算法的退役锂离子电池快速聚类[J]. 汽车工程, 2024, 46(4): 643-651.
|
|
CHEN L, HE M P, WU S X, et al. Fast clustering of retired lithium-ion batteries based on adaptive fuzzy C-means algorithm[J]. Automotive Engineering, 2024, 46(4): 643-651.
|
| 12 |
LIU X, TANG Q, FENG Y, et al. Fast sorting method of retired batteries based on multi-feature extraction from partial charging segment[J/OL]. Applied Energy, 2023, 351: 121930.
|
| 13 |
来鑫, 陈权威, 邓聪, 等. 一种基于电化学阻抗谱的大规模退役锂离子电池的软聚类方法[J]. 电工技术学报, 2022, 37(23): 6054-6064.
|
|
LAI X, CHEN Q W, DENG C, et al. A soft clustering method for the large-scale retired lithium-ion batteries based on electro‐ chemical impedance spectroscopy[J]. Transactions of China Electrotechnical Society, 2022, 37(23):6054-6064.
|
| 14 |
范茂松, 耿萌萌, 赵光金, 等. 基于多频点阻抗的梯次利用电池分选技术研究[J]. 储能科学与技术, 2023, 12(7): 2202-2210.
|
|
FAN M S, GENG M M, ZHAO G J, et al. Research on battery sorting technology for echelon utilization based onmultifrequency impedance[J]. Energy Storage Science and Technology,2023, 12 (7): 2202-2210.
|
| 15 |
WANG Y, HUANG H, WANG H. Rapid-regroup strategy for retired batteries based on short-time dynamic voltage and electrochemical impedance spectroscopy[J/OL]. Journal of Energy Storage, 2023, 63: 107102.
|
| 16 |
CHOI W, SHIN H C, KIM J M, et al. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries[J/OL]. Journal of Electrochemical Science and Technology, 2020, 11(1): 1-13.
|
| 17 |
BARAI A, CHOUCHELAMANE G H, GUO Y, et al. A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy [J/OL]. Journal of Power Sources, 2015, 280: 74-80.
|
| 18 |
LOU F, CHEN D. Aligned carbon nanostructures based 3D electrodes for energy storage [J/OL]. Journal of Energy Chemistry, 2015, 24(5): 559-586.
|
| 19 |
ZHU J, DEWI DARMA M S, KNAPP M, et al. Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance [J/OL]. Journal of Power Sources, 2020, 448: 227575.
|
| 20 |
ECKER M, NIETO N, KÄBITZ S, et al. Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries Li(NiMnCo)O2 [J/OL]. Journal of Power Sources, 2014, 248: 839-851.
|
| 21 |
DUBARRY M, LIAW B Y. Identify capacity fading mechanism in a commercial LiFePO4 cell [J/OL]. Journal of Power Sources, 2009, 194(1): 541-549.
|
| 22 |
DOLLÉ M, GRUGEON S, BEAUDOIN B, et al. In situ TEM study of the interface carbon/electrolyte[J/OL]. Journal of Power Sources, 2001, 97-98: 104-106.
|
| 23 |
LEE S B, PYUN S I. The effect of electrolyte temperature on the passivity of solid electrolyte interphase formed on a graphite electrode[J/OL]. Carbon, 2002, 40(13): 2333-2339.
|
| 24 |
刘万里,李子涵,梁宏毅, 等.基于相似性优化模型样本的实车锂电池健康状态分析[J]. 汽车工程, 2024, 46(3): 489-497.
|
|
LIU W L, LI Z H, LIANG H Y, et al. Real vehicle battery health state estimation based on similarity optimization model samples[J]. Automotive Engineering, 2024, 46(3): 489-497.
|
| 25 |
郑岳久, 李家琦, 朱志伟, 等.基于快速充电曲线的退役锂电池模块快速分选技术[J].电网技术,2020,44(5):1664-1673.
|
|
ZHENG Y J, LI J Q, ZHU Z W, et al. Rapid classification based on fast charging curves for reuse of retired lithium-ion battery modules[J]. Power System Technology,2020,44(5):1664-1673.
|
| 26 |
LI Q, LU T, LAI C, et al. Lithium-ion battery capacity estimation based on fragment charging data using deep residual shrinkage networks and uncertainty evaluation [J/OL]. Energy, 2024, 290: 130208.
|
| 27 |
ZHANG L, ZHANG J, GAO T, et al. Improved LSTM based state of health estimation using random segments of the charging curves for lithium-ion batteries[J/OL]. Journal of Energy Storage, 2023, 74: 109370.
|
| 28 |
TAN C W, DEMPSTER A, BERGMEIR C, et al. MultiRocket: multiple pooling operators and transformations for fast and effective time series classification[J/OL]. arXiv, 2022. http://arxiv.org/abs/2102.00457.
|