汽车工程 ›› 2024, Vol. 46 ›› Issue (9): 1643-1653.doi: 10.19562/j.chinasae.qcgc.2024.09.012
• • 上一篇
收稿日期:
2024-05-30
修回日期:
2024-07-30
出版日期:
2024-09-25
发布日期:
2024-09-19
通讯作者:
耿兆杰
E-mail:gengzhaojie@bjev.com.cn
基金资助:
Zhaojie Geng(),Wenjing Yuan,Rong Huang,Bao Mu,Kangkang Wang,Jingjing Liang
Received:
2024-05-30
Revised:
2024-07-30
Online:
2024-09-25
Published:
2024-09-19
Contact:
Zhaojie Geng
E-mail:gengzhaojie@bjev.com.cn
摘要:
随着新能源车辆市场保有量增多和动力电池能量密度提升,热失控事件逐渐增多,动力电池安全问题变得尤为重要,漏液是诱发电池热失控的关键因素之一。本文通过模拟电芯级和更接近整车应用的模块级漏液,研究漏液对电性能和安全性的影响;同时,基于实验数据及整车大数据提取漏液电池特征,建立预警逻辑,实现漏液预警大数据监控。针对电芯级实验,对比分析循环和静置状态下漏液电芯与正常电芯的测试数据,发现漏液电芯与正常电芯相比,质量减少、厚度增加、容量衰减、直流内阻增大、电芯拆解及表征后存在异常,证明了漏液对电性能及安全性具有一定影响。针对模块级实验,通过分析模块中不同漏液程度并联单元的厚度、直流内阻等变化特征,证明了厚度和直流内阻都随着漏液程度的增大而变大,也增大了电池潜在的安全风险。针对整车级大数据,识别漏液电池在充电起始及结束阶段的压差特征,建立预警识别逻辑,并进行大数据监控。
耿兆杰,袁文静,黄荣,穆宝,王康康,梁晶晶. 锂离子软包电池漏液对电性能、安全性影响及大数据预警应用[J]. 汽车工程, 2024, 46(9): 1643-1653.
Zhaojie Geng,Wenjing Yuan,Rong Huang,Bao Mu,Kangkang Wang,Jingjing Liang. Study on the Influence of Lithium Ion Soft Package Battery Leakage on Electrical Performance and Safety, and Big Data Warning[J]. Automotive Engineering, 2024, 46(9): 1643-1653.
1 | HAO X, ZHOU Y, WANG H, et al. Plug-in electric vehicles in China and the USA: a technology and market comparison[J]. Mitigation and Adaptation Strategies for Global Change, 2020, 25(3): 329-353. |
2 | 国务院. 国务院关于印发《中国制造2025》的通知(国发〔2015〕28号)_政府信息公开专栏[EB/OL](2015-05-08)[2021-01-05]. http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm. |
The State Council. Notice of the State Council on Issuing "Made in China 2025" (Guofa [2015] No. 28) _ Government Information Disclosure Column[EB/OL](2015-05-08)[2021-01-05]. http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm. | |
3 | FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review[J]. Energy Storage Materials, 2018, 10: 246-267. |
4 | HAN X, LU L, ZHENG Y, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. ETransportation, 2019, 1: 100005. |
5 | 王淮斌, 李阳, 王钦正, 等. 电动汽车事故致灾机理及调查方法[J]. 储能科学与技术, 2021, 10(2): 544-557. |
WANG H B, LI Y, WANG Q Z, et al. Mechanisms causing thermal runaway-related electric vehicle accidents and accident investigation strategies[J]. Energy Storage Science and Technology, 2021, 10(2): 544-557. | |
6 | 曹勇, 严长青, 王义飞, 等. 高安全高比能量动力锂离子电池系统路线探索[J]. 储能科学与技术, 2018, 7(3): 384-393. |
CAO Y, YAN C Q, WANG Y F, et al. The technical route exploration of lithium ion battery with high safety and high energy density[J]. Energy Storage Science and Technology, 2018, 7(3): 384-393. | |
7 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理, 建模与防控[D]. 北京: 清华大学, 2016. |
FENG X N. Thermal runaway initiation and propagation of lithium-Ion traction battery for electric vehicle: test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. | |
8 | 陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018, 7(6): 1030-1039. |
CHEN T Y, GAO S, FENG X N, et al. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039. | |
9 | 王芳, 王峥, 林春景,等. 新能源汽车动力电池安全失效潜在原因分析[J]. 储能科学与技术, 2022, 11(5): 1411-1418. |
WANG F, WANG Z, LIN C J, et al. Analysis on potential causes of safety failure of new energy vehicles[J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. | |
10 | 阮艺亮. 我国新能源汽车起火事故分析与对策[J]. 汽车工业研究, 2019 (3): 31-35. |
RUAN Y L. Analysis and countermeasures of new energy vehicle fire accidents in China[J]. Auto Industry Research, 2019 (3): 31-35. | |
11 | RUAN Y, WANG J. Analysis and countermeasures of new energy vehicle fire accident in China[J]. Automot. Digest, 2019, 5: 39-43. |
12 | 陈晓轩, 李晟, 胡泳钢, 等. 锂离子电池三元层状氧化物正极材料失效模式分析[J]. Energy, 2019, 8(6). |
CHEN X X, LI C, HU Y G, et al. Failure mechanism of Li1+x(NCM)1-xO2 layered oxide cathode material during capacity degradation[J]. Energy Storage Science and Technology, 2019, 8(6). | |
13 | FENG X, HE X, LU L, et al. Analysis on the fault features for internal short circuit detection using an electrochemical-thermal coupled model[J]. Journal of The Electrochemical Society, 2018, 165(2): A155. |
14 | ARORA S, SHEN W, KAPOOR A. Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1319-1331. |
15 | HONG Y S, LI N, CHEN H, et al. In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field[J]. Energy Storage Materials, 2018, 11: 118-126. |
16 | KOVACHEV G, ELLERSDORFER C, GSTREIN G, et al. Safety assessment of electrically cycled cells at high temperatures under mechanical crush loads[J]. eTransportation, 2020, 6: 100087. |
17 | 王彩娟,宋杨,金军.锂离子电池温度试验中漏液问题的分析[J].电池,2008(4):239-240. |
WANG C J, SONG Y, JIN J. The investigation of leakage in the thermal test of Li-ion battery[J]. Battery, 2008(4):239-240. | |
18 | 王理,陈志伟,曾佳丽.锂离子软包倍率电芯短路漏液改善研究[J].广东化工,2021,48(11):21-22. |
WANG L, CHEN Z W, ZENG J L. Leakage improvement research of short circuit test for lithium soft-package rate cell[J]. Guangdong Chemical Industry, 2021,48(11):21-22. | |
19 | 朱慧. 圆柱形锂电池端面缺陷检测方法研究[D].沈阳:沈阳工业大学,2019. |
ZHU H. Research on the inspection method of cylindrical lithium battery end face defects[D]. Shenyang: Shenyang University of Technology, 2019. | |
20 | 朱静,于申军,陈志奎,等.水分对锂离子电池性能的影响研究[J].华南师范大学学报(自然科学版),2009(S1):245-247. |
ZHU J, YU S J, CHEN Z K, et al. Effect of water contamination on the electrochemical performance of lithium ion battery[J]. Journal of South China Normal University(Natural Science Edition), 2009(S1):245-247. | |
21 | 张芬丽, 郭静, 郑延辉, 等. 水分对锂离子电池性能的影响[J]. 河南化工, 2016, 33(8): 30-32. |
ZHANG F L, GUO J, ZHENG Y H, et al. Influence of water content on the properties of lithium ion batteries[J]. Henan Chemical Industry, 2016, 33(8): 30-32. |
[1] | 姚晗欣,王学远,袁永军,戴海峰,魏学哲. 基于电化学阻抗谱的电池组不一致性诊断[J]. 汽车工程, 2024, 46(7): 1167-1176. |
[2] | 叶涛,武建华,郑林锋,张宇鑫,洪朝锋. 正弦纹波电流对锂电池快充性能影响的研究[J]. 汽车工程, 2024, 46(6): 1034-1044. |
[3] | 邝男男,胡帛涛,栗国,赵光磊,冯爽,许立坤. 电池模组热扩散精准建模及高效仿真研究[J]. 汽车工程, 2024, 46(4): 652-661. |
[4] | 刘万里,李子涵,梁宏毅,陈吉清,莫丙达. 基于相似性优化模型样本的实车锂电池健康状态分析[J]. 汽车工程, 2024, 46(3): 489-497. |
[5] | 李致远, 鲁锐华, 余庆华, 颜伏伍. 动力电池热失控特征及防控技术研究分析[J]. 汽车工程, 2024, 46(1): 139-150. |
[6] | 陈飞,孔祥栋,孙跃东,韩雪冰,卢兰光,郑岳久,欧阳明高. 锂离子电池制造工艺仿真技术进展[J]. 汽车工程, 2023, 45(9): 1516-1529. |
[7] | 李勇滔,孙晨旭,郑伟光,许恩永,李育方,王善超. 基于毫米波雷达与视觉融合的碰撞预警[J]. 汽车工程, 2023, 45(9): 1666-1676. |
[8] | 郭文超,杨林,邓忠伟,李济霖,范志先. 云端数据驱动的锂电池故障分级预警研究[J]. 汽车工程, 2023, 45(9): 1677-1687. |
[9] | 胡明辉,朱广曜,刘长贺,唐国峰. 考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计[J]. 汽车工程, 2023, 45(9): 1688-1701. |
[10] | 李达,邓钧君,张照生,刘鹏,王震坡. 电动车辆动力电池安全预警策略研究综述[J]. 汽车工程, 2023, 45(8): 1392-1407. |
[11] | 梁海强,何洪文,代康伟,庞博,王鹏. 融合经验老化模型和机理模型的电动汽车锂离子电池寿命预测方法研究[J]. 汽车工程, 2023, 45(5): 825-835. |
[12] | 廉玉波,凌和平,马晴婵,任强,贺斌. 电动汽车锂离子电池脉冲加热技术研究进展[J]. 汽车工程, 2023, 45(2): 169-174. |
[13] | 吕又付,罗卫明,陈荐,吴锡鸿,李传常. 分层优化测定锂离子电池比热容参数的实验研究[J]. 汽车工程, 2023, 45(2): 183-190. |
[14] | 张健豪,高兴奇,张莉. 基于容量增量曲线与充电容量差的电池组微短路诊断方法[J]. 汽车工程, 2023, 45(2): 191-198. |
[15] | 李贵敬,谷青锴,杨昊鑫,黄健齐,邸立明. PA/EG耦合风冷电池热管理系统轻量研究[J]. 汽车工程, 2023, 45(2): 209-218. |
|