| 1 |
MA M, DUAN Q, LI X, et al. Fault diagnosis of external soft-short circuit for series connected lithium-ion battery pack based on modified dual extended Kalman filter[J]. Journal of Energy Storage, 2021, 41: 102902.
|
| 2 |
ZHANG H, LI S, CHEN F, et al. Battery voltage fault diagnosis for electric vehicles considering driving condition variation[J]. IET Intelligent Transport Systems, 2024, 18(4): 574-590.
|
| 3 |
HAN W, ZOU C, ZHOU C, et al. Estimation of cell SOC evolution and system performance in module-based battery charge equalization systems[J]. IEEE Transactions on Smart Grid, 2018, 10(5): 4717-4728.
|
| 4 |
WANG Q, WANG Z, ZHANG L, et al. A novel consistency evaluation method for series-connected battery systems based on real-world operation data[J]. IEEE Transactions on Transportation Electrification, 2020, 7(2): 437-451.
|
| 5 |
李达,邓钧君,张照生,等.电动车辆动力电池安全预警策略研究综述[J].汽车工程,2023,45(8):1392-1407.
|
|
LI D, DENG J J, ZHANG Z S, et al. A review of safety early warning strategies for power batteries in electric vehicles[J]. Automotive Engineering, 2023, 45(8): 1392-1407.
|
| 6 |
LI D, ZHANG Z, LIU P, et al. DBSCAN-based thermal runaway diagnosis of battery systems for electric vehicles[J]. Energies, 2019, 12(15): 2977.
|
| 7 |
QIAO D, WANG X, LAI X, et al. Online quantitative diagnosis of internal short circuit for lithium-ion batteries using incremental capacity method[J]. Energy, 2022, 243: 123082.
|
| 8 |
FAN X, ZHANG W, SUN B, et al. Battery pack consistency modeling based on generative adversarial networks[J]. Energy, 2022, 239: 122419.
|
| 9 |
MA Z, HUO Q, WANG W, et al. Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain[J]. Energy, 2023, 278: 127747.
|
| 10 |
WANG Y, HAN X, XU X, et al. A comprehensive data-driven assessment scheme for power battery of large-scale electric vehicles in cloud platform[J]. Journal of Energy Storage, 2023, 64: 107210.
|
| 11 |
LI A F, MIN B Y, ZHANG C Y, et al. Evaluation method for consistency of lithium-ion battery packs in electric vehicles based on the Mahalanobis-Taguchi system[J]. Journal of Energy Storage, 2024, 78: 110045.
|
| 12 |
杨世春,周思达,周新岸,等.动力电池云端管理关键技术研究综述[J].机械工程学报,2023,59(10):134-151.
|
|
YANG S C, ZHOU S D, ZHOU X A, et al. Research progress of cloud management for power batteries on electric vehicles[J]. Journal of Mechanical Engineering, 2023, 59(10): 134-151.
|
| 13 |
XU C, LI L, XU Y, et al. A vehicle-cloud collaborative method for multi-type fault diagnosis of lithium-ion batteries[J]. eTransportation, 2022, 12: 100172.
|
| 14 |
洪吉超,梁峰伟,杨海旭,等. 大数据驱动动力电池智能安全管理与控制方法研究[J]. 汽车工程, 2023, 45(10): 1845-1861, 1907.
|
|
HONG J C, LIANG F W, YANG H X, et al. Research on big data-driven intelligent safety management and control methods for power batteries[J]. Automotive Engineering, 2023, 45(10): 1845-1861, 1907.
|
| 15 |
TIAN J, FAN Y, PAN T, et al. A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113978.
|
| 16 |
YUAN H, CUI N, LI C, et al. Early-stage internal short circuit fault diagnosis for lithium-ion batteries based on local-outlier detection[J]. Energy Storage, 2023, 57: 106196.
|
| 17 |
国家市场监督管理总局, 国家标准化管理委员会. 电动汽车远程服务与管理系统技术规范:GB/T 32960—2016 [S]. 2016.
|
|
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Technical specification for remote service and management system for electric vehicles: GB/T 32960—2016 [S]. 2016.
|
| 18 |
SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423.
|
| 19 |
WEAVER W. The mathematics of communication[J]. Communication Theory, 2017, 12: 27-38.
|
| 20 |
RICHMAN S J, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278(6): 2039-2049.
|
| 21 |
姜建国,杨效岩,毕洪波.基于VMD-FE-CNN-BiLSTM的短期光伏发电功率预测[J].太阳能学报,2024,45(7):462-473.
|
|
JIANG J G, YANG X Y, BI H B. Photovoltaic power forecasting method based on VMD-FE-CNN-BiLSTM[J]. Journal of Solar Energy, 2024, 45(7): 462-473.
|
| 22 |
BANDT C,POMPE B. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17): 174102.
|
| 23 |
HONG J, WANG Z, CHEN W, et al. Multi‐fault synergistic diagnosis of battery systems based on the modified multi-scale entropy[J]. International Journal of Energy Research, 2019, 43(14): 8350-8369.
|
| 24 |
ZHANG X, HONG J, XU X. Fault diagnosis of real-scenario battery systems based on modified entropy algorithms in electric vehicles[J]. Journal of Energy Storage, 2023, 63: 107079.
|
| 25 |
HONG J, WANG Z, QU C, et al. Fault prognosis and isolation of lithium-ion batteries in electric vehicles considering real-scenario thermal runaway risks[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 88-99.
|
| 26 |
HONG J, WANG Z, MA F, et al. Thermal runaway prognosis of battery systems using the modified multiscale entropy in real-world electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2269-2278.
|
| 27 |
刘启全,马建,赵轩,等.基于优化熵算法的真实场景下电动汽车动力电池系统故障诊断[J/OL].中国公路学报,2024,37(10):233-248.
|
|
LIU Q Q, MA J, ZHAO X, et al. Fault diagnosis of power battery system for electric vehicles based on optimized entropy algorithm in real scenarios [J/OL]. China Journal of Highway and Transport, 2024, 37(10): 233-248.
|
| 28 |
LI D, LIU P, ZHANG Z, et al. Battery thermal runaway fault prognosis in electric vehicles based on abnormal heat generation and deep learning algorithms[J]. IEEE Transactions on Power Electronics, 2022, 37(7): 8513-8525.
|
| 29 |
ZHANG L, GAO T, CAI G, et al. Research on electric vehicle charging safety warning model based on back propagation neural network optimized by improved gray wolf algorithm[J]. Journal of Energy Storage, 2022, 49: 104092.
|
| 30 |
LI D, ZHANG Z, LIU P, et al. Battery fault diagnosis for electric vehicles based on voltage abnormality by combining the long short-term memory neural network and the equivalent circuit model[J]. IEEE Transactions on Power Electronics, 2020, 36(2): 1303-1315.
|