汽车工程 ›› 2025, Vol. 47 ›› Issue (6): 1022-1036.doi: 10.19562/j.chinasae.qcgc.2025.06.002
• • 上一篇
收稿日期:2024-11-22
修回日期:2025-01-06
出版日期:2025-06-25
发布日期:2025-06-20
通讯作者:
朱艳丽
E-mail:zhuyanli1999@bit.edu.cn
基金资助:
Xiaoyu Li1,Shen Zhao1,Jun Tian2,Songli Zhang3,Yanli Zhu3(
)
Received:2024-11-22
Revised:2025-01-06
Online:2025-06-25
Published:2025-06-20
Contact:
Yanli Zhu
E-mail:zhuyanli1999@bit.edu.cn
摘要:
热失控是影响锂离子电池安全使用的关键问题,本研究通过搭建非绝热环境外部极端温度冲击试验,对比研究三元镍钴锰锂电池和磷酸铁锂电池的单体及电池模组热失控特性,分析了不同单体电池和电池模组的燃烧行为及其成组后的热失控蔓延情况,构建了三维共轭传热-热失控耦合模型,探究了不同荷电状态和电池离热源距离对高温诱发电池热失控的影响规律及模组热失控蔓延的边界条件。结果表明,电池荷电状态越低正极-电解液副反应起始温度越低,副反应产热越小,热源距离大于150 cm时在400 s内难以使LFP电池热失控,PMI泡沫可以实现毫米级别的热阻隔,当其厚度大于3.75 mm或导热系数小于0.03 W/(m·K)时可以有效抑制热失控蔓延。
李晓宇,赵深,田君,张松立,朱艳丽. 极端温度冲击下锂离子电池热失控建模及安全边界研究[J]. 汽车工程, 2025, 47(6): 1022-1036.
Xiaoyu Li,Shen Zhao,Jun Tian,Songli Zhang,Yanli Zhu. Research on Thermal Runaway Modeling and Safety Boundary of Li-ion Batteries Under Extreme Temperature Shock[J]. Automotive Engineering, 2025, 47(6): 1022-1036.
| 1 | WANG J, HE Y, WANG H, et al. Low-carbon promotion of new energy vehicles: a quadrilateral evolutionary game[J]. Renewable and Sustainable Energy Reviews, 2023, 188: 113795. |
| 2 | FENG X, ZHANG F, HUANG W, et al. Mechanism of internal thermal runaway propagation in blade batteries[J]. Journal of Energy Chemistry, 2024, 89: 184-194. |
| 3 | 李致远, 鲁锐华, 余庆华, 等. 动力电池热失控特征及防控技术研究分析[J]. 汽车工程, 2024, 46(1): 139-150. |
| LI Z Y, LU R H, YU Q H, et al. Research and analysis of thermal runaway characteristics and prevention and control technology of power battery[J]. Automotive Engineering, 2024, 46(1): 139-150. | |
| 4 | 刘邦金, 汪林威, 吴月月, 等. 锂离子电池热管理研究进展[J]. 化工学报, 2024. |
| LIU B J, WANG L W, WU Y Y, et al. Advances in thermal management of lithium-ion batteries[J]. Chinese Journal of Chemical Engineering, 2024. | |
| 5 | DUAN X, WANG H, JIA Y, et al. A multiphysics understanding of internal short circuit mechanisms in lithium-ion batteries upon mechanical stress abuse[J]. Energy Storage Material, 2022, 45: 667-679. |
| 6 | REN D, LU L, HE X, et al. Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions[J]. Applied Energy, 2019, 250: 323-332. |
| 7 | REN D, FENG X, LIU L, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. |
| 8 | 王震坡, 袁昌贵, 李晓宇. 新能源汽车动力电池安全管理技术挑战与发展趋势分析[J]. 汽车工程, 2020, 42(12): 1606-1620. |
| WANG Z P, YUAN C G, LI X Y. An analysis on challenge and development trend of safety management technologies for traction battery in new energy vehicles[J]. Automotive Engineering, 2020, 42(12): 1606-1620. | |
| 9 | FENG X, FANG M, HE X, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301. |
| 10 | MD SAID M, MOHD TOHIR M. Characterisation of thermal runaway behaviour of cylindrical lithium-ion battery using accelerating rate calorimeter and oven heating[J]. Case Studies in Thermal Engineering, 2021, 28: 101474. |
| 11 | 刘承鑫, 李梓衡, 陈泽宇, 等. 储能锂离子电池高温诱发热失控特性研究[J]. 储能科学与技术, 2024, 13(7): 2425-2431. |
| LIU C X, LI Z H, CHEN Z Y, et al. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage[J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. | |
| 12 | FU Y, LU S, LI K, et al. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter[J]. Journal of Power Sources, 2015, 273: 216-222. |
| 13 | SCHÖBERL J,ANK M,SCHREIBER M,et al. Thermal runaway propagation in automotive lithium-ion batteries with NMC-811 and LFP cathodes: safety requirements and impact on system integration[J]. eTransportation, 2024, 19:100305. |
| 14 | WEI H, HU X, DENG Y, et al. Distributed activation energy treatment of polyimide aerogel and its blocking effect on thermal runaway propagation of ternary battery[J]. Journal of Energy Storage, 2024, 90: 111744. |
| 15 | 朱晓庆, 王震坡, WANG Hsin, 等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91-118. |
| ZHU X Q, WANG Z P, WANG H, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2020, 56(14): 91-118. | |
| 16 | AZUAJE-BERBECÍ B, BÜLENT ERTAN H. A model for the prediction of thermal runaway in lithium-ion batteries[J]. Journal of Energy Storage, 2024, 90: 111831. |
| 17 | CHEN J, RUI X, HSU H, et al. Thermal runaway modeling of LiNi0.6Mn0.2Co0.2O2/graphite batteries under different states of charge[J]. Journal of Energy Storage, 2022, 49: 104090. |
| 18 | YE Z, FU X. Experimental and simulation investigation on suppressing thermal runaway in battery pack[J]. Scientific Reports, 2024, 14(1): 12723. |
| 19 | ABHILASH K, JADHAV A, KALAMKAR V, et al. Numerical study on thermal runaway in a cell and battery pack at critical heating conditions with variation in heating powers[J]. Journal of Energy Storage, 2024, 90: 111813. |
| 20 | 尹莲花, 骆洪志, 吴会强, 等. 冯·卡门曲面整流罩PMI泡沫夹层防热结构技术研究[J]. 导弹与航天运载技术, 2021(3): 43-46. |
| YIN L H, LUO H Z, WU H Q, et al. Research of the thermal protection-structure technique by Von-Karman fairing with PMI foam sandwich structure[J]. Missiles and Space Vehicles, 2021(3): 43-46. | |
| 21 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
| FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. |
| [1] | 耿兆杰,袁文静,黄荣,穆宝,王康康,梁晶晶. 锂离子软包电池漏液对电性能、安全性影响及大数据预警应用[J]. 汽车工程, 2024, 46(9): 1643-1653. |
| [2] | 禹进,郭川钰,于佳佳. 基于概率函数触发的锂电池模组热失控蔓延建模与分析方法研究[J]. 汽车工程, 2024, 46(8): 1422-1430. |
| [3] | 姚晗欣,王学远,袁永军,戴海峰,魏学哲. 基于电化学阻抗谱的电池组不一致性诊断[J]. 汽车工程, 2024, 46(7): 1167-1176. |
| [4] | 叶涛,武建华,郑林锋,张宇鑫,洪朝锋. 正弦纹波电流对锂电池快充性能影响的研究[J]. 汽车工程, 2024, 46(6): 1034-1044. |
| [5] | 邝男男,胡帛涛,栗国,赵光磊,冯爽,许立坤. 电池模组热扩散精准建模及高效仿真研究[J]. 汽车工程, 2024, 46(4): 652-661. |
| [6] | 刘万里,李子涵,梁宏毅,陈吉清,莫丙达. 基于相似性优化模型样本的实车锂电池健康状态分析[J]. 汽车工程, 2024, 46(3): 489-497. |
| [7] | 张秋艳,程泽,刘旭. 基于多维度多尺度特征的锂离子电池RUL估计方法[J]. 汽车工程, 2024, 46(10): 1897-1903. |
| [8] | 李致远, 鲁锐华, 余庆华, 颜伏伍. 动力电池热失控特征及防控技术研究分析[J]. 汽车工程, 2024, 46(1): 139-150. |
| [9] | 陈飞,孔祥栋,孙跃东,韩雪冰,卢兰光,郑岳久,欧阳明高. 锂离子电池制造工艺仿真技术进展[J]. 汽车工程, 2023, 45(9): 1516-1529. |
| [10] | 胡明辉,朱广曜,刘长贺,唐国峰. 考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计[J]. 汽车工程, 2023, 45(9): 1688-1701. |
| [11] | 梁海强,何洪文,代康伟,庞博,王鹏. 融合经验老化模型和机理模型的电动汽车锂离子电池寿命预测方法研究[J]. 汽车工程, 2023, 45(5): 825-835. |
| [12] | 王春,唐滔,张永志. 考虑环境温度影响的超级电容SOC加权融合估计方法[J]. 汽车工程, 2023, 45(4): 627-636. |
| [13] | 焦道宽,郝冬,王晓兵,马明辉,张妍懿. 振动对燃料电池扩散层液态水传输行为探究[J]. 汽车工程, 2023, 45(3): 402-408. |
| [14] | 廉玉波,凌和平,马晴婵,任强,贺斌. 电动汽车锂离子电池脉冲加热技术研究进展[J]. 汽车工程, 2023, 45(2): 169-174. |
| [15] | 吕又付,罗卫明,陈荐,吴锡鸿,李传常. 分层优化测定锂离子电池比热容参数的实验研究[J]. 汽车工程, 2023, 45(2): 183-190. |
|
||