汽车工程 ›› 2025, Vol. 47 ›› Issue (7): 1238-1257.doi: 10.19562/j.chinasae.qcgc.2025.07.002
• • 上一篇
收稿日期:2025-04-01
修回日期:2025-04-25
出版日期:2025-07-25
发布日期:2025-07-18
通讯作者:
王倩倩
E-mail:qianqianwang@usst.edu.cn
基金资助:
Jixuan Lu1,Weibo Zheng2,Xiang Li3,Qianqian Wang1(
),Bing Li2,Pingwen Ming2
Received:2025-04-01
Revised:2025-04-25
Online:2025-07-25
Published:2025-07-18
Contact:
Qianqian Wang
E-mail:qianqianwang@usst.edu.cn
摘要:
质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)作为一种新型汽车动力源,展现出广泛的应用潜力。然而,氢气渗透问题在长期运行中日益显现,已成为制约其大规模商业化应用的重要技术挑战。氢气渗透不仅降低了PEMFC的输出电压,还可能对电池的耐久性和安全性产生负面影响。为应对这一问题,本文基于现有研究成果,对PEMFC氢气渗透的研究进展进行了系统概述。首先,本文阐述了氢气渗透的基本原理及其潜在危害;接着,分析了膜衰减前后氢气渗透的传递机制,并回顾了最新的渗透模型研究进展;最后,结合氢气渗透的原理,总结了目前有效的抑制措施,并展望了未来的研究发展趋势。本文旨在为提升PEMFC性能、延长其使用寿命以及增强系统安全性提供理论支持。
陆继轩,郑伟波,李翔,王倩倩,李冰,明平文. 质子交换膜燃料电池氢气渗透研究进展及抑制措施概述[J]. 汽车工程, 2025, 47(7): 1238-1257.
Jixuan Lu,Weibo Zheng,Xiang Li,Qianqian Wang,Bing Li,Pingwen Ming. Overview of Research Progress on Hydrogen Permeation in Proton Exchange Membrane Fuel Cells and Mitigation Measures[J]. Automotive Engineering, 2025, 47(7): 1238-1257.
| [1] | JIAO K, XUAN J, DU Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. |
| [2] | PARNIAN M J, ROWSHANZAMIR S, PRASAD A K, et al. High durability sulfonated poly (ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications[J]. Journal of Membrane Science, 2018, 556: 12-22. |
| [3] | KUSOGLU A, WEBER A Z. New insights into perfluorinated sulfonic-acid ionomers[J]. Chemical Reviews, 2017, 117(3): 987-1104. |
| [4] | ZHAO J, TU Z, CHAN S H. Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): a review[J]. Journal of Power Sources, 2021, 488: 229434. |
| [5] | ATAK N N, ERDEM Z, TUNA Ş, et al. The effect of membrane thickness on the exergetic performance in PEMFC[J]. International Journal of Exergy, 2024, 43(2): 163-176. |
| [6] | FAHR S, ENGEL F K, REHFELDT S, et al. Overview and evaluation of crossover phenomena and mitigation measures in proton exchange membrane (PEM) electrolysis[J]. International Journal of Hydrogen Energy, 2024, 68: 705-721. |
| [7] | ROBERT M, EL K A, PERRIN J C, et al. Effects of conjoint mechanical and chemical stress on perfluorosulfonic-acid membranes for fuel cells[J]. Journal of Power Sources, 2020, 476: 228662. |
| [8] | MITTAL V O, KUNZ H R, FENTON J M. Membrane degradation mechanisms in PEMFCs[J]. Journal of The Electrochemical Society, 2007, 154(7): B652. |
| [9] | MOHAMED H F M, ITO K, KOBAYASHI Y, et al. Free volume and permeabilities of O2 and H2 in Nafion membranes for polymer electrolyte fuel cells[J]. Polymer, 2008, 49(13-14): 3091-3097. |
| [10] | YOO D, HWANG B, OH S, et al. Acceleration of electrolyte membrane degradation by frequent activation in PEMFC electrochemical durability evaluation[J]. Korean Journal of Chemical Engineering, 2023, 40(8): 2004-2009. |
| [11] | WANG Q, LI B, YANG D, et al. Research progress of heat transfer inside proton exchange membrane fuel cells[J]. Journal of Power Sources, 2021, 492: 229613. |
| [12] | HEINZMANN M, WEBER A. Impedance based performance model for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2023, 558: 232540. |
| [13] | HOLBY E F, SHENG W, SHAO-HORN Y, et al. Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen[J]. Energy & Environmental Science, 2009, 2(8): 865-871. |
| [14] | TANG Q, LI B, YANG D, et al. Review of hydrogen crossover through the polymer electrolyte membrane[J]. International Journal of Hydrogen Energy, 2021, 46(42): 22040-22061. |
| [15] | ZHOU X, QIU D, PENG L, et al. Numerical and experimental characterization of gas permeation through membranes with consideration of mechanical degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2023, 556: 232489. |
| [16] | LI Y, CHU J, SU T, et al. Molecular dynamics study on impacts of different mixed metal ion contents on transport performance of proton exchange membrane for PEMFCs[J]. International Journal of Hydrogen Energy, 2024, 55: 347-356. |
| [17] | BUTORI M, ERIKSSON B, NIKOLIĆ N, et al. Ionic conductivity and hydrogen crossover for IT-PEMFCs: influence of pressure, temperature, relative humidity and reinforcement[J]. International Journal of Hydrogen Energy, 2024, 95: 1158-1170. |
| [18] | LIN S, ZHAO S, DOU H, et al. Mass‐transfer mechanism of Nafion proton‐exchange membranes in fuel cells—a review[J]. Energy Technology, 2024, 12(6): 2400164. |
| [19] | WANG C, KRISHNAN V, WU D, et al. Evaluation of the microstructure of dry and hydrated perfluorosulfonic acid ionomers: microscopy and simulations[J]. Journal of Materials Chemistry A, 2013, 1(3): 938-944. |
| [20] | KIM S H, SONG J, NGUYEN B T D, et al. Acquiring reliable hydrogen crossover data of hydrated ion exchange membranes to elucidate the ion conducting channel morphology[J]. Chemical Engineering Journal, 2023, 471: 144696. |
| [21] | SAKAI T, TAKENAKA H, TORIKAI E. Gas diffusion in the dried and hydrated Nafions[J]. Journal of the Electrochemical Society, 1986, 133(1): 88. |
| [22] | LIU L, LI H, AVGOUROPOULOS G. A review of porous polytetrafluoroethylene reinforced sulfonic acid-based proton exchange membranes for fuel cells[J]. International Journal of Hydrogen Energy, 2024, 50: 501-527. |
| [23] | LIU S, WANG Y, LI N, et al. PTFE-reinforced pore-filling proton exchange membranes with sulfonated poly (ether ether ketone) s and poly (aryl ether sulfone) s[J]. Journal of Membrane Science, 2024, 694: 122431. |
| [24] | LEE K A, YOON K R, KWON S H, et al. Post-assembly modification of polymeric composite membranes using spin drying for fuel cell applications[J]. Journal of Materials Chemistry A, 2019, 7(13): 7380-7388. |
| [25] | FRANCIA C, IJERI V S, SPECCHIA S, et al. Estimation of hydrogen crossover through Nafion® membranes in PEMFCs[J]. Journal of Power Sources, 2011, 196(4): 1833-1839. |
| [26] | PATIL V, RESHMI P V, PRAJNA S, et al. Degradation mechanisms in PEM fuel cells: a brief review[J]. Materials Today: Proceedings, 2023. |
| [27] | MADHAV D, WANG J, KELOTH R, et al. A review of proton exchange membrane degradation pathways, mechanisms, and mitigation strategies in a fuel cell[J]. Energies, 2024, 17(5): 998. |
| [28] | LIU Z, CAI S, TU Z, et al. Recent development in degradation mechanisms of proton exchange membrane fuel cells for vehicle applications: problems, progress, and perspectives[J]. Energy Storage and Saving, 2024. |
| [29] | FERREIRA R B, FALCÃO D S, PINTO A. Simulation of membrane chemical degradation in a proton exchange membrane fuel cell by computational fluid dynamics[J]. International Journal of Hydrogen Energy, 2021, 46(1): 1106-1120. |
| [30] | OKONKWO P C, BELGACEM I B, EMORI W, et al. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: a review[J]. International Journal of Hydrogen Energy, 2021, 46(55): 27956-27973. |
| [31] | MAIER M, ABBAS D, MITROVIC J, et al. Performance and degradation analysis of low and high equivalent weight short side chain PFSA membranes in PEMFCs[J]. ACS Applied Energy Materials, 2024, 7(22): 10637-10649. |
| [32] | FENG Y, XIE J, ZHAO G, et al. Degradation study and diagnostic technology for Nafion membrane[J]. Journal of Power Sources, 2024, 613: 234880. |
| [33] | CHEN S, HAO M, HU Y, et al. Insight into the evolution of membrane chemical degradation in proton exchange membrane fuel cells: from theoretical analysis to model developing[J]. Journal of Power Sources, 2024, 599: 234238. |
| [34] | CASTELINO P, SHAH A, GOKHALE M, et al. Optimum hydrogen flowrates and membrane-electrode clam** pressure in hydrogen fuel cells with dual-serpentine flow channels[J]. Materials Today: Proceedings, 2021, 35: 412-416. |
| [35] | XING Y, LI H, AVGOUROPOULOS G. Research progress of proton exchange membrane failure and mitigation strategies[J]. Materials, 2021, 14(10): 2591. |
| [36] | SHI S, SUN X, LIN Q, et al. Fatigue crack propagation behavior of fuel cell membranes after chemical degradation[J]. International Journal of Hydrogen Energy, 2020, 45(51): 27653-27664. |
| [37] | MIRFARSI S H, KUMAR A, JEONG J, et al. Mechanical durability of reinforced sulfo-phenylated polyphenylene-based proton exchange membranes: impacts of ion exchange capacity and reinforcement thickness[J]. Journal of Power Sources, 2025, 630: 236137. |
| [38] | LU Y, YANG D, WU H, et al. Degradation mechanism analysis of a fuel cell stack based on perfluoro sulfonic acid membrane in near-water boiling temperature environment[J]. Renewable Energy, 2024, 234: 121166. |
| [39] | SHI S, LI J, LI H, et al. Temperature-dependent fatigue crack growth mechanisms of fuel cell membranes[J]. International Journal of Fatigue, 2022, 154: 106554. |
| [40] | YAN Q, TOGHIANI H, LEE Y W, et al. Effect of sub-freezing temperatures on a PEM fuel cell performance, startup and fuel cell components[J]. Journal of Power Sources, 2006, 160(2): 1242-1250. |
| [41] | MAZZEO F, DI N L, CARELLO M. Assessing open circuit voltage losses in PEMFCs: a new methodological approach[J]. Energies, 2024, 17(11): 2785. |
| [42] | VILEKAR S A, DATTA R. The effect of hydrogen crossover on open-circuit voltage in polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2010, 195(8): 2241-2247. |
| [43] | ARATO E, COSTA P. Transport mechanisms and voltage losses in PEMFC membranes and at electrodes: a discussion of open-circuit irreversibility[J]. Journal of Power Sources, 2006, 159(2): 861-868. |
| [44] | TAYLOR A K, SMITH C, NEYERLIN K C. Mitigation and diagnosis of pin-hole formation in polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2023, 571: 232971. |
| [45] | DI P C, PLEKHANOV E, KROMPIEC M, et al. Platinum-based catalysts for oxygen reduction reaction simulated with a quantum computer[J]. NPJ Computational Materials, 2024, 10(1): 285. |
| [46] | ZHANG L, JIANG S, MA W, et al. Oxygen reduction reaction on Pt-based electrocatalysts: four-electron vs. two-electron pathway[J]. Chinese Journal of Catalysis, 2022, 43(6): 1433-1443. |
| [47] | YASUDA K, TANIGUCHI A, AKITA T, et al. Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling[J]. Physical Chemistry Chemical Physics, 2006, 8(6): 746-752. |
| [48] | LI S, WEI X, JIANG S, et al. Hydrogen crossover diagnosis for fuel cell stack: an electrochemical impedance spectroscopy based method[J]. Applied Energy, 2022, 325: 119884. |
| [49] | WEBER A Z. Gas-crossover and membrane-pinhole effects in polymer-electrolyte fuel cells[J]. Journal of The Electrochemical Society, 2008, 155(6): B521. |
| [50] | SHAN J, GAZDZICKI P, LIN R, et al. Local resolved investigation of hydrogen crossover in polymer electrolyte fuel cell[J]. Energy, 2017, 128: 357-365. |
| [51] | LIN R, GÜLZOW E, SCHULZE M, et al. Investigation of membrane pinhole effects in polymer electrolyte fuel cells by locally resolved current density[J]. Journal of The Electrochemical Society, 2010, 158(1): B11. |
| [52] | DING F, ZHAN X, WEI T, et al. Similarities and differences between internal short-circuit current and hydrogen crossover current in a proton exchange membrane fuel cell[J]. Chemical Engineering Journal, 2024, 494: 153091. |
| [53] | RODGERS M P, BONVILLE L J, KUNZ H R, et al. Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime[J]. Chemical Reviews, 2012, 112(11): 6075-6103. |
| [54] | REN P, PEI P, LI Y, et al. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions[J]. Progress in Energy and Combustion Science, 2020, 80: 100859. |
| [55] | CHU T, TANG Q, WANG Q, et al. Experimental study on the effect of flow channel parameters on the durability of PEMFC stack and analysis of hydrogen crossover mechanism[J]. Energy, 2023, 264: 126286. |
| [56] | OBERMAIER M, JOZWIAK K, RAUBER M, et al. Comparative study of pinhole detection methods for automotive fuel cell degradation analysis[J]. Journal of Power Sources, 2021, 488: 229405. |
| [57] | GUNJI H, EGUCHI M, SEKINE F, et al. Gas-leak-induced pinhole formation at polymer electrolyte membrane fuel cell electrode edges[J]. International Journal of Hydrogen Energy, 2017, 42(1): 562-574. |
| [58] | NGO P M, NAKAJIMA H, KARIMATA T, et al. Investigation of in-situ catalytic combustion in polymer-electrolyte-membrane fuel cell during combined chemical and mechanical stress test[J]. Journal of Power Sources, 2022, 542: 231803. |
| [59] | NGO P M, KARIMATA T, SAITOU T, et al. Effect of current density on membrane degradation under the combined chemical and mechanical stress test in the PEMFCs[J]. Journal of Power Sources, 2023, 556: 232446. |
| [60] | KREITMEIER S, LERCH P, WOKAUN A, et al. Local degradation at membrane defects in polymer electrolyte fuel cells[J]. Journal of The Electrochemical Society, 2013, 160(4): F456. |
| [61] | MA T, WANG K, DU B, et al. Effect on high frequency resistance behavior of proton exchange membrane fuel cell during storage process[J]. International Journal of Hydrogen Energy, 2022, 47(16): 9753-9761. |
| [62] | SHAO Y, XU L, HU Z, et al. Pseudo-steady state of high-frequency resistance for polymer electrolyte membrane fuel cell: effect of in-plane heterogeneity[J]. Journal of The Electrochemical Society, 2021, 168(8): 084509. |
| [63] | WANG Q, ZHENG W, LI B, et al. Simulation-based study of local hydrogen crossover dynamics and their effects on proton exchange membrane fuel cells[J]. Chemical Engineering Journal, 2024, 499: 156408. |
| [64] | FAN L, ZHAO J, LUO X, et al. Comparison of the performance and degradation mechanism of PEMFC with Pt/C and Pt black catalyst[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5418-5428. |
| [65] | SCHALENBACH M, HOEFNER T, PACIOK P, et al. Gas permeation through nafion. part 1: measurements[J]. The Journal of Physical Chemistry C, 2015, 119(45): 25145-25155. |
| [66] | ROGERS C E. Permeation of gases and vapours in polymers[M]//Polymer permeability. Dordrecht: Springer Netherlands, 1985: 11-73. |
| [67] | BAZAID M, HUANG Y, GODDARD III W A, et al. Proton transport through interfaces in nanophase-separation of hydrated aquivion membrane: molecular dynamics simulation approach[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 676: 132187. |
| [68] | SCHALENBACH M, HOEH M A, GOSTICK J T, et al. Gas permeation through nafion. part 2: resistor network model[J]. The Journal of Physical Chemistry C, 2015, 119(45): 25156-25169. |
| [69] | DING H, LI Y, ZOU Y, et al. A new insight into the relationship of interface phase between aqueous phase and solid phase on gas permeability below glass transition temperature[J]. International Journal of Hydrogen Energy, 2024, 91: 310-320. |
| [70] | BAN S, HUANG C, YUAN X Z, et al. Molecular simulation of gas adsorption, diffusion, and permeation in hydrated Nafion membranes[J]. The Journal of Physical Chemistry B, 2011, 115(39): 11352-11358. |
| [71] | TAKEUCHI K, KUO A T, HIRAI T, et al. Hydrogen permeation in hydrated perfluorosulfonic acid polymer membranes: effect of polymer crystallinity and equivalent weight[J]. The Journal of Physical Chemistry C, 2019, 123(33): 20628-20638. |
| [72] | CUI R, LI S, YU C, et al. Understanding the mechanism of nitrogen transport in the perfluorinated sulfonic-acid hydrated membranes via molecular dynamics simulations[J]. Journal of Membrane Science, 2022, 648: 120328. |
| [73] | TAO H, YANG K, WANG B, et al. Numerical study of gas crossover effect on hydrogen-oxygen proton exchange membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2024, 234: 126060. |
| [74] | FRANZ T, PAPAKONSTANTINOU G, SUNDMACHER K. Transient hydrogen crossover in dynamically operated PEM water electrolysis cells-A model-based analysis[J]. Journal of Power Sources, 2023, 559: 232582. |
| [75] | ZHANG J, WU J, ZHANG H. PEM fuel cell testing and diagnosis[M]. Newnes, 2013. |
| [76] | YAN X, XU Z, YUAN S, et al. Structural and transport properties of ultrathin perfluorosulfonic acid ionomer film in proton exchange membrane fuel cell catalyst layer: a review[J]. Journal of Power Sources, 2022, 536: 231523. |
| [77] | ZHAO Y, LUO M, YANG J, et al. Numerical analysis of PEMFC stack performance degradation using an empirical approach[J]. International Journal of Hydrogen Energy, 2024, 56: 147-163. |
| [78] | CHOI H J, CHOI H, KIM J, et al. Comparison on the impact of membrane thickness on the performance of proton exchange membrane-based electrochemical devices[J]. International Journal of Hydrogen Energy, 2025, 119: 161-172. |
| [79] | BAIK K D, HONG B K, KIM M S. Effects of operating parameters on hydrogen crossover rate through Nafion® membranes in polymer electrolyte membrane fuel cells[J]. Renewable Energy, 2013, 57: 234-239. |
| [80] | ZHENG W, XU L, HU Z, et al. Dynamic modeling of chemical membrane degradation in polymer electrolyte fuel cells: effect of pinhole formation[J]. Journal of Power Sources, 2021, 487: 229367. |
| [81] | JIAO K, LI X. Water transport in polymer electrolyte membrane fuel cells[J]. Progress in Energy and Combustion Science, 2011, 37(3): 221-291. |
| [82] | TAO H, HUA S, WU K, et al. Two-dimensional simulation of purge processes for dead-ended H2/O2 proton exchange membrane fuel cell[J]. International Journal of Green Energy, 2023, 20(12): 1266-1283. |
| [83] | ZANG L, HAO L, ZHU X. Effect of gas crossover on the cold start process of proton exchange membrane fuel cells[J]. Fuel, 2024, 363: 130921. |
| [84] | TSAI S W, CHEN Y S. A mathematical model to study the energy efficiency of a proton exchange membrane fuel cell with a dead-ended anode[J]. Applied Energy, 2017, 188: 151-159. |
| [85] | HU Y, WANG S, HE Y. Evaluation of adsorption and permeation behaviors in hydrated Nafion membranes with degradation[J]. The Journal of Physical Chemistry B, 2021, 125(34): 9879-9886. |
| [86] | WISE D L, HOUGHTON G. The diffusion coefficients of ten slightly soluble gases in water at 10-60 ℃[J]. Chemical Engineering Science, 1966, 21(11): 999-1010. |
| [87] | GE S H, LI X G, HSING I M. Water management in PEMFCs using absorbent wicks[J]. Journal of the Electrochemical Society, 2004, 151(9): B523. |
| [88] | CHA J H, LEE W, BAEK J. Penetration of hydrogen into polymer electrolyte membrane for fuel cells by quantum and molecular dynamics simulations[J]. Polymers, 2021, 13(6): 947. |
| [89] | HAN Z, PEI S, YU C, et al. Understanding the mechanism of hydrogen transport in imidazolyl polymers doped Nafion membranes via molecular dynamics simulations: case of PVMZ/Nafion[J]. International Journal of Hydrogen Energy, 2024, 72: 437-448. |
| [90] | JIMÉNEZ-GARCÍA J C, FRANCESCHINI E A, MORGAN N A B, et al. Insights into H2 and O2 transport in the three-phase boundary of PEM fuel cells[J]. International Journal of Hydrogen Energy, 2024, 91: 728-734. |
| [91] | SMITH K, FOGLIA F, CLANCY A J, et al. A proton selective carbon nitride layer for high durability fuel cells[J]. Advanced Functional Materials, 2024: 2418073. |
| [92] | BAIK K D, HONG B K, KIM M S. Effects of operating parameters on hydrogen crossover rate through Nafion® membranes in polymer electrolyte membrane fuel cells[J]. Renewable Energy, 2013, 57: 234-239. |
| [93] | CHENG X, ZHANG J, TANG Y, et al. Hydrogen crossover in high-temperature PEM fuel cells[J]. Journal of Power Sources, 2007, 167(1): 25-31. |
| [94] | ITO H, MAEDA T, NAKANO A, et al. Properties of Nafion membranes under PEM water electrolysis conditions[J]. International Journal of Hydrogen Energy, 2011, 36(17): 10527-10540. |
| [95] | TANG F, TANG Z, YANG Y, et al. A general equation for the polarization curves of proton exchange membrane fuel cell under hydrogen crossover current measurement[J]. Journal of Electroanalytical Chemistry, 2023, 937: 117425. |
| [96] | KREITMEIER S, SCHULER G A, WOKAUN A, et al. Investigation of membrane degradation in polymer electrolyte fuel cells using local gas permeation analysis[J]. Journal of Power Sources, 2012, 212: 139-147. |
| [97] | ATHANASAKI G, JAYAKUMAR A, KANNAN A M. Gas diffusion layers for PEM fuel cells: materials, properties and manufacturing-a review[J]. International Journal of Hydrogen Energy, 2023, 48(6): 2294-2313. |
| [98] | SINGH R, SUI P C, WONG K H, et al. Modeling the effect of chemical membrane degradation on PEMFC performance[J]. Journal of The Electrochemical Society, 2018, 165(6): F3328-F3336. |
| [99] | HAN Y, ZHAO Y, REN Z, et al. Studies on ammonia crossover behavior of hydroxide exchange membranes for direct ammonia fuel cells[J]. Journal of Membrane Science, 2025, 717: 123638. |
| [100] | WANG Z M, LIU P, CAO Y P, et al. Characterization and electrocatalytic properties of electrospun Pt‐IrO2 nanofiber catalysts for oxygen evolution reaction[J]. International Journal of Energy Research, 2021, 45(4): 5841-5851. |
| [101] | CHEN J, SUN Y, HU D, et al. Performance modeling and mechanism study of proton exchange membrane water electrolyzer coupled with water electroosmosis[J]. Energy Conversion and Management, 2024, 315: 118753. |
| [102] | HONG J, WANG J, WU Q, et al. Controlled Nafion modification of membranes by countercurrent heating for emulsion separation[J]. ACS Applied Polymer Materials, 2023, 5(3): 1837-1847. |
| [103] | KIM N I, SEO B G, PARK H W, et al. Improving stability of reinforced composite membrane with hydrophilic interlayer coating[J]. Journal of Membrane Science, 2023, 679: 121668. |
| [104] | YE D, TU Z, YU Y, et al. Hydrogen permeation across super‐thin membrane and the burning limitation in low‐temperature proton exchange membrane fuel cell[J]. International Journal of Energy Research, 2014, 38(9): 1181-1191. |
| [105] | LI S, WEI X, WANG X, et al. Qualitative and quantitative diagnosis of internal hydrogen leakage in fuel cell based on air flowrate control and open-circuit voltage measurements[J]. Electrochimica Acta, 2024, 477: 143821. |
| [106] | MARTIN A, TRINKE P, BENSMANN B, et al. Hydrogen crossover in PEM water electrolysis at current densities up to 10 A cm-2[J]. Journal of The Electrochemical Society, 2022, 169(9): 094507. |
| [107] | KULIKOVSKY A A. Quasi-3D modeling of water transport in polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2003, 150(11): A1432. |
| [108] | SUERMANN M, PĂTRU A, SCHMIDT T J, et al. High pressure polymer electrolyte water electrolysis: test bench development and electrochemical analysis[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12076-12086. |
| [109] | ONDA K, MURAKAMI T, HIKOSAKA T, et al. Performance analysis of polymer-electrolyte water electrolysis cell at a small-unit test cell and performance prediction of large stacked cell[J]. Journal of The Electrochemical Society, 2002, 149(8): A1069. |
| [110] | SINGH R, OBEROI A S, SINGH T. Factors influencing the performance of PEM fuel cells: a review on performance parameters, water management, and cooling techniques[J]. International Journal of Energy Research, 2022, 46(4): 3810-3842. |
| [111] | XING L, LIU X, ALAJE T, et al. A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell[J]. Energy, 2014, 73: 618-634. |
| [112] | RIZVANDI O B, YESILYURT S. A pseudo three-dimensional, two-phase, non-isothermal model of proton exchange membrane fuel cell[J]. Electrochimica Acta, 2019, 302: 180-197. |
| [113] | LISO V, ARAYA S S, OLESEN A C, et al. Modeling and experimental validation of water mass balance in a PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2016, 41(4): 3079-3092. |
| [114] | HU Y, LI J, WANG S. Evaluation of Pt particles redeposition effect on gas transport in Nafion membrane[J]. Journal of Molecular Liquids, 2023, 389: 122880. |
| [115] | DONG X, LI Y, WEI G, et al. Perfluorosulfonic acid membranes with reduced hydrogen permeation by filling with carbon quantum dots for fuel cells[J]. Journal of Materials Science, 2024, 59(26): 11893-11906. |
| [116] | YIN C, HE C, LIU Q, et al. Free volume, gas permeation, and proton conductivity in MIL-101-SO3H/Nafion composite membranes[J]. Physical Chemistry Chemical Physics, 2019, 21(47): 25982-25992. |
| [117] | AL MUNSUR A Z, GOO B H, KIM Y, et al. Nafion-based proton-exchange membranes built on cross-linked semi-interpenetrating polymer networks between poly (acrylic acid) and poly (vinyl alcohol)[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28188-28200. |
| [118] | FENG C, DONG Y, ZHONG S, et al. Optimizing the molecular weight of poly (vinylidene fluoride) for competitive perfluorosulfonic acid membranes[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2022, 16(2): 2100468. |
| [119] | TAGHIZADEH M T, VATANPARAST M. Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells[J]. Journal of Colloid and Interface Science, 2016, 483: 1-10. |
| [120] | TROGADAS P, RAMANI V. Pt/C/MnO2 hybrid electrocatalysts for degradation mitigation in polymer electrolyte fuel cells[J]. Journal of Power Sources, 2007, 174(1): 159-163. |
| [121] | ZHAO S, WANG R, TIAN T, et al. Self-assembly-cooperating in situ construction of MXene-CeO2 as hybrid membrane coating for durable and high-performance proton exchange membrane fuel cell[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(13): 4269-4278. |
| [122] | LI G, ZHENG W, LI X, et al. Application of the Ce-based radical scavengers in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2024, 74: 17-30. |
| [123] | ZHAO N, XIE Z, GIRARD F, et al. Tolerance of membrane with additive to iron contamination in PEM fuel cell[J]. International Journal of Hydrogen Energy, 2024, 52: 1173-1179. |
| [124] | 邢以晶, 刘芳, 张雅琳, 等. 质子交换膜燃料电池膜电极制备方法的研究进展[J]. 化工进展, 2021, 40(S1): 281-290. |
| XING Y, LIU F, ZHANG Y, et al. Research progress on preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 281-290. | |
| [125] | LIU L, XING Y, LI Y, et al. Double-layer expanded polytetrafluoroethylene reinforced membranes with cerium oxide radical scavengers for highly stable proton exchange membrane fuel cells[J]. ACS Applied Energy Materials, 2022, 5(7): 8743-8755. |
| [126] | VINOTHKANNAN M, KIM A R, YOO D J. Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells[J]. RSC Advances, 2018, 8(14): 7494-7508. |
| [127] | NAWN G, VEZZU K, NEGRO E, et al. Structural analyses of blended Nafion/PVDF electrospun nanofibers[J]. Physical Chemistry Chemical Physics, 2019, 21(20): 10357-10369. |
| [128] | MAITI T K, DIXIT P, SINGH J, et al. A novel strategy toward the advancement of proton exchange membranes through the incorporation of propylsulfonic acid-functionalized graphene oxide in crosslinked acid-base polymer blends[J]. International Journal of Hydrogen Energy, 2023, 48(4): 1482-1500. |
| [129] | ZHANG X, TRIEU D, ZHENG D, et al. Nafion/PTFE composite membranes for a high temperature PEM fuel cell application[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11086-11094. |
| [130] | HEO J W, AN L, KIM M S, et al. Preparation and characterization of zwitterion-substituted lignin/Nafion composite membranes[J]. International Journal of Biological Macromolecules, 2023, 253: 127421. |
| [131] | JAVED R M N, Al-OTHMAN A, NANCARROW P, et al. Zirconium silicate-ionic liquid membranes for high-temperature hydrogen PEM fuel cells[J]. International Journal of Hydrogen Energy, 2024, 52: 894-908. |
| [132] | ZUCCONI A, HACK J, STOCKER R, et al. Challenges and opportunities for characterisation of high-temperature polymer electrolyte membrane fuel cells: a review[J]. Journal of Materials Chemistry A, 2024. |
| [133] | GAGLIARDI G G, PALONE O, PARIS E, et al. An efficient composite membrane to improve the performance of PEM reversible fuel cells[J]. Fuel, 2024, 357: 129993. |
| [134] | NICOTERA I, ENOTIADIS A, ANGJELI K, et al. Effective improvement of water-retention in nanocomposite membranes using novel organo-modified clays as fillers for high temperature PEMFCs[J]. The Journal of Physical Chemistry B, 2011, 115(29): 9087-9097. |
| [135] | KIM T, SIHN Y, YOON I H, et al. Monolayer hexagonal boron nitride nanosheets as proton-conductive gas barriers for polymer electrolyte membrane water electrolysis[J]. ACS Applied Nano Materials, 2021, 4(9): 9104-9112. |
| [136] | LEE S, JANG W, KIM M, et al. Rational design of ultrathin gas barrier layer via reconstruction of hexagonal boron nitride nanoflakes to enhance the chemical stability of proton exchange membrane fuel cells[J]. Small, 2019, 15(44): 1903705. |
| [137] | KOMMA M, FREIBERG A T S, ABBAS D, et al. Applicability of single-layer graphene as a hydrogen-blocking interlayer in low-temperature PEMFCs[J]. ACS Applied Materials & Interfaces, 2024, 16(18): 23220-23232. |
| [138] | KUTAGULLA S, LE N H, CALDINO BOHN I T, et al. Comparative studies of atomically thin proton conductive films to reduce crossover in hydrogen fuel cells[J]. ACS Applied Materials & Interfaces, 2023, 15(51): 59358-59369. |
| [139] | ITO H, MIYAZAKI N, ISHIDA M, et al. Cross-permeation and consumption of hydrogen during proton exchange membrane electrolysis[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20439-20446. |
| [140] | 丁文杰, 张亮, 李俊, 等. 膜内掺 Pt 含量对质子交换膜电解水性能与氢渗透的影响[J]. 中国电机工程学报, 2023, 44(14): 5588-5595. |
| DING W J, ZHANG L, LI J, et al. Effect of Pt content in membrane on performance and hydrogen permeation of proton exchange membrane water electrolysis[J]. Proceedings of the CSEE, 2024, 44(14): 5588-5595. | |
| [141] | KLOSE C, TRINKE P, BÖHM T, et al. Membrane interlayer with Pt recombination particles for reduction of the anodic hydrogen content in PEM water electrolysis[J]. Journal of The Electrochemical Society, 2018, 165(16): F1271-F1277. |
| [142] | GARBE S, SAMULESSON E, SCHMIDT T J, et al. Comparison of Pt-doped membranes for gas crossover suppression in polymer electrolyte water electrolysis[J]. Journal of The Electrochemical Society, 2021, 168(10): 104502. |
| [143] | MARTIN A, ABBAS D, TRINKE P, et al. Communication—proving the importance of Pt-interlayer position in PEMWE membranes for the effective reduction of the anodic hydrogen content[J]. Journal of The Electrochemical Society, 2021, 168(9): 094509. |
| [144] | WEI F, KOSAKIAN A, SECANELL M. Effect of operating conditions and micro-porous layer on the water transport and accumulation in proton exchange membrane fuel cells[J]. Chemical Engineering Journal, 2023, 471: 144423. |
| [145] | WANG J, YE D, HUANG J, et al. Dual functionality of cathode microporous layers: reducing hydrogen permeation and enhancing performance in proton exchange membrane water electrolyzers[J]. Chemical Engineering Journal, 2024, 500: 157060. |
| [146] | WILBERFORCE T, EL HASSAN Z, OGUNGBEMI E, et al. A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 236-260. |
| [147] | CHEN X, LUO X, WANG C, et al. Channel-to-rib width ratio optimization for the electrical performance enhancement in PEMFC based on accurate strain-stress simulation[J]. Energies, 2024, 17(3): 762. |
| [148] | OMRANI R, SHABANI B. An analytical model for hydrogen and nitrogen crossover rates in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(55): 31041-31055. |
| [149] | WANG J, DING R, CAO F, et al. Comparison of state-of-the-art machine learning algorithms and data-driven optimization methods for mitigating nitrogen crossover in PEM fuel cells[J]. Chemical Engineering Journal, 2022, 442: 136064. |
| [150] | GOMEZ R J, APODACA D, ALMENDRALA M. Predictive modelling of PEMFC degradation against hydrogen crossover using machine learning models in matlab[J]. View Article, 2024. |
| [151] | TAO J, ZHANG Y, WEI X, et al. Optimization of fast cold start strategy for PEM fuel cell stack[J]. Applied Energy, 2024, 362: 123018. |
| [152] | LIANG J, FAN L, DU Q, et al. Ice formation during PEM fuel cell cold start: acceptable or not?[J]. Advanced Science, 2023, 10(24): 2302151. |
| [153] | LEI L, HE P, HE P, et al. A comparative study: the effect of current loading modes on the cold start-up process of PEMFC stack[J]. Energy Conversion and Management, 2022, 251: 114991. |
| [154] | WANG F, ZHANG H, MING P, et al. Experimental study on rapid cold start-up performance of PEMFC system[J]. International Journal of Hydrogen Energy, 2023, 48(57): 21898-21907. |
| [155] | YANG X, SUN J, SUN S, et al. Study on the temperature distribution and its effect on self-start of large-area proton exchange membrane fuel cells at subzero temperatures[J]. Electrochimica Acta, 2021, 396: 139183. |
| [1] | 李光伟,韩雪,邢丹敏,明平文. 催化层/微孔层界面设计对PEMFC影响研究[J]. 汽车工程, 2025, 47(1): 77-84. |
| [2] | 任立海,陈黎黎,杨振华,蒋成约,赵清江,刘西,胡远志. 冲击载荷下PEMFC力-电耦合建模及电学响应研究[J]. 汽车工程, 2025, 47(1): 96-106. |
| [3] | 徐寅嵩,李文浩,杜常清,颜伏伍. 考虑运行参数可寻优范围的PEMFC系统净功率优化[J]. 汽车工程, 2024, 46(7): 1137-1146. |
| [4] | 余宾宴,马建,陈轶嵩,耿莉敏,王茜. 微孔间距和孔径对PEMFC气体扩散层表面液滴流动传输特性的影响[J]. 汽车工程, 2024, 46(6): 1025-1033. |
| [5] | 彭钰祥,余庆华,敖瑞,颜伏伍. 燃料电池废热驱动弹热制冷装置性能分析[J]. 汽车工程, 2024, 46(4): 662-668. |
| [6] | 陶阿邦,陶建建,魏学哲. PEMFC冷启动过程阻抗谱及特征频率分析[J]. 汽车工程, 2024, 46(2): 269-280. |
| [7] | 袁新杰,刘芳,侯中军. 基于GA-PSO-Otsu算法的质子交换膜燃料电池催化层孔结构自适应识别[J]. 汽车工程, 2023, 45(9): 1702-1709. |
| [8] | 王万腾,李楠,白雪宜,杨抖,栗航,李贵敬. 气体扩散层分层设计对PEMFC电堆性能影响研究[J]. 汽车工程, 2023, 45(9): 1720-1727. |
| [9] | 王俊峰,陈吉清,兰凤崇,刘青山,曾常菁. 燃料电池模型多尺度参数双代价函数的全局灵敏度分析[J]. 汽车工程, 2023, 45(3): 393-401. |
| [10] | 吕平,孙昕,许有伟,张宝,徐家慧,邢丹敏. 车用燃料电池堆低温停机吹扫试验研究[J]. 汽车工程, 2023, 45(11): 2123-2129. |
| [11] | 陈吉清,曾常菁,周云郊,兰凤崇,刘青山. 质子交换膜燃料电池五边形挡板流场结构优化与性能改进[J]. 汽车工程, 2023, 45(10): 1862-1875. |
| [12] | 刘青山,兰凤崇,陈吉清,王俊峰,曾常菁. 燃料电池气体扩散层纤维孔隙特性对液态水传输的影响分析[J]. 汽车工程, 2022, 44(7): 1069-1080. |
| [13] | 赵阳,叶康,孙汉乔,胡尊严,徐梁飞,李建秋,欧阳明高. 铝基复合材料制氢性能与安全性研究[J]. 汽车工程, 2022, 44(5): 730-735. |
| [14] | 王亚雄,王轲轲,钟顺彬,何洪文,王薛超. 面向耐久性提升的车用燃料电池系统电控技术研究进展[J]. 汽车工程, 2022, 44(4): 545-559. |
| [15] | 赵鑫,陈光,张妍懿. 运行工况对PEMFC性能与水含量的影响分析[J]. 汽车工程, 2022, 44(3): 379-384. |
|
||