汽车工程 ›› 2025, Vol. 47 ›› Issue (8): 1468-1478.doi: 10.19562/j.chinasae.qcgc.2025.08.004

• • 上一篇    

基于驾驶人认知决策空间的换道意图预测

孙秦豫1,周航1(),付锐1,2,王畅1,2,黄涛1,杨骏锋1,王芸豪1   

  1. 1.长安大学汽车学院,西安 710064
    2.长安大学,汽车运输安全保障技术交通行业重点实验室,西安 710064
  • 收稿日期:2024-10-29 修回日期:2025-01-07 出版日期:2025-08-25 发布日期:2025-08-18
  • 通讯作者: 周航 E-mail:zhouhang@chd.edu.cn
  • 基金资助:
    国家自然科学青年基金(52102451)和中央高校基本科研基金(300102224205)资助。

Prediction of Lane Change Intention Based on Driver's Cognitive-Making Space

Qinyu Sun1,Hang Zhou1(),Rui Fu1,2,Chang Wang1,2,Tao Huang1,Junfeng Yang1,Yunhao Wang1   

  1. 1.School of Automobile,Chang'an University,Xi'an 710064
    2.Chang'an University,Key Laboratory of Automotive Transportation Safety Technology,Ministry of Transport,Xi'an 710064
  • Received:2024-10-29 Revised:2025-01-07 Online:2025-08-25 Published:2025-08-18
  • Contact: Hang Zhou E-mail:zhouhang@chd.edu.cn

摘要:

智能车辆人机协作的关键是以人为核心,换道作为最基本的驾驶任务之一,准确高效预测驾驶人换道意图对人机协作拟人化发展至关重要。本文基于驾驶人认知决策空间的理论,设计了驾驶人换道意图预测试验,分析了车辆操纵数据、驾驶人视觉特性与驾驶场景之间的关系,生成了驾驶人注视区与驾驶场景拓扑关系图,构建了不同时间窗口的驾驶人换道意图预测模型数据集,基于ConvNeXt(convolutional network)模型的逆残差深度可分离卷积,结合注意力机制ECA(efficient channel attention)、ConvLSTM(convolutional long short term memory)网络以及GCN(graph convolutional networks)图神经网络等结构,构建了基于注意力机制的驾驶人换道意图预测模型。结果表明,数据集时间宽度为3 s时模型的预测准确率表现最佳,为91.15%,通过对比试验、消融试验充分验证了所提出的基于注意力机制的驾驶人换道意图预测模型的优越性能。

关键词: 智能车辆, 换道意图, 认知决策空间, 视觉特性, 图像检测, 深度学习

Abstract:

The key to human-machine collaboration in intelligent vehicles is to focus on people. Lane changing is one of the most basic driving tasks. Accurately and efficiently predicting the driver's lane changing intention is crucial to the development of humanized human-machine collaboration. Based on the theory of driver cognitive-making space, in this paper the driver's lane changing intention prediction experiment is designed. The relationship between vehicle operation data, driver's visual characteristics and driving scenes is analyzed, and a topological relationship diagram between the driver's gaze area and the driving scene is generated. Then the driver's lane changing intention prediction model dataset with different time windows is constructed. Based on the inverse residual deep separable convolution of the ConvNeXt (convolutional network) model, combined with the attention mechanism ECA (efficient channel attention), ConvLSTM (convolutional long short term the memory) network and GCN (graph convolutional networks) figure structure, a predictive model of driver intention lane changing based on attention mechanism is built. The results show that when the time width of the data set is 3 s, the prediction accuracy of the model is the best, which is 91.15%, and the superior performance of the proposed driver lane change intention prediction model based on attention mechanism is fully verified by comparison and ablation experiments.

Key words: intelligent vehicle, lane change intention, cognitive-making space, visual properties, image detection, deep learning