| [1] |
LI L, LI P. Analysis of driver's steering behavior for lane change prediction[C].2019 11th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). IEEE, 2019: 71-75.
|
| [2] |
SCHMIDT K, BEGGIATO M, HOFFMANN K H, et al. A mathematical model for predicting lane changes using the steering wheel angle[J]. Journal of Safety Research, 2014, 49: 85-90.
|
| [3] |
DIEHL F, BRUNNER T, LE M T, et al. Graph neural networks for modelling traffic participant interaction[C]. 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019: 695-701.
|
| [4] |
LIU S, TAN D, HONG S, et al. Study on the prediction of lane change intention of intelligent vehicles in the network environment[J]. World Electric Vehicle Journal, 2021, 12(1): 27.
|
| [5] |
宋晓琳, 曾艳兵, 曹昊天, 等. 基于长短期记忆网络的换道意图识别方法[J]. 中国公路学报, 2021, 34(11): 236-245.
|
|
SONG X L, ZENG Y B, CAO H T, et al. Lane-changing intention recognition method based on long short-term memory network[J]. China Journal Of Highway And Transport, 2021, 34(11): 236-245.
|
| [6] |
BHATTACHARYA S, BERNADIN S. Eye-glance frequency as a function of driver's intent to change lanes[C]. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall). IEEE, 2018: 1-5.
|
| [7] |
GUO Y, ZHANG H, WANG C, et al. Driver lane change intention recognition in the connected environment[J]. Physica A: Statistical Mechanics and its Applications, 2021, 575: 126057.
|
| [8] |
YI D, SU J, LIU C, et al. Trajectory clustering aided personalized driver intention prediction for intelligent vehicles[J]. IEEE Transactions on Industrial Informatics, 2018, 15(6): 3693-3702.
|
| [9] |
LIU Z Q, PENG M C, SUN Y C. Estimation of driver lane change intention based on the LSTM and dempster-shafer evidence theory[J]. Journal of Advanced Transportation, 2021.
|
| [10] |
LIU Y, WANG X, LI L, et al. A novel lane change decision-making model of autonomous vehicle based on support vector machine[J]. IEEE Access, 2019, 7: 26543-26550.
|
| [11] |
LI X, WANG W, ROETTING M. Estimating driver’s lane-change intent considering driving style and contextual traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(9): 3258-3271.
|
| [12] |
LI L, ZHAO W, XU C, et al. Lane-change intention inference based on rnn for autonomous driving on highways[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 5499-5510.
|
| [13] |
XING Y, LV C, WANG H, et al. An ensemble deep learning approach for driver lane change intention inference[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102615.
|
| [14] |
CHEN S, JIAN Z, HUANG Y, et al. Autonomous driving: cognitive construction and situation understanding [J]. Science China Information Sciences, 2019, 62: 1-27.
|
| [15] |
DOLAN R J, DAYAN P. Goals and habits in the brain [J]. Neuron, 2013, 80(2): 312-325.
|
| [16] |
CHEN X, TREIBER M, KANAGARAJ V, et al. Social force models for pedestrian traffic-state of the art [J]. Transport Reviews, 2018, 38(5): 625-653.
|
| [17] |
HO M K, ABEL D, CORREA C G,et al. People construct simplified mental representations to plan[J]. Nature, 2022, 606(7912): 129-136.
|
| [18] |
PAN Y, ZHANG Q, ZHANG Y, et al. Lane-change intention prediction using eye-tracking technology: a systematic review[J]. Applied Ergonomics, 2022, 103: 103775.
|
| [19] |
LIU H, WANG T, LI W, et al. Lane-change intention recognition considering oncoming traffic: novel insights revealed by advances in deep learning[J]. Accident Analysis & Prevention, 2024, 198: 107476.
|
| [20] |
HIMBERGER K D, CHIEN H Y, HONEY C J. Principles of temporal processing across the cortical hierarchy [J]. Neuroscience, 2018, 389: 161-174.
|
| [21] |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
|
| [22] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
| [23] |
PAN Y. Heading toward artificial intelligence 2.0[J]. Engineering, 2016, 2(4): 409-413.
|
| [24] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:, 2014.
|
| [25] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30.
|
| [26] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv preprint arXiv:, 2020.
|