汽车工程 ›› 2024, Vol. 46 ›› Issue (11): 2005-2016.doi: 10.19562/j.chinasae.qcgc.2024.11.007
收稿日期:
2024-03-30
修回日期:
2024-06-03
出版日期:
2024-11-25
发布日期:
2024-11-22
通讯作者:
赵治国
E-mail:zhiguozhao@tongji.edu.cn
基金资助:
Zhongjie Liu,Zhiguo Zhao(),Qin Yu
Received:
2024-03-30
Revised:
2024-06-03
Online:
2024-11-25
Published:
2024-11-22
Contact:
Zhiguo Zhao
E-mail:zhiguozhao@tongji.edu.cn
摘要:
为保障高级别辅助驾驶系统决策的安全性和可靠性,提出一种基于动态场景行车风险评估的车辆辅助驾驶行为决策方法。首先,基于势场理论分别建立障碍物风险评估模型和虚拟车道风险评估模型,用以描述动态交通场景对行驶车辆所产生的驾驶风险;其次,根据车辆换道过程将换道行为分为换道动机产生和目标车道安全决策两个阶段,提出换道场景风险评估指标,制定安全换道规则,采用公开数据集分析验证了换道场景下风险评估指标的表征能力;之后,基于实时交通环境信息,确定车道内驾驶行为决策方法,实现多种驾驶场景下的行为安全决策;最后,在PreScan/CarSim/Simulink联合仿真平台和实车试验平台上对所提出的车辆辅助驾驶行为决策方法进行验证。结果表明,所提出的风险评估模型和驾驶行为决策方法,能够准确识别并评估行车风险,并实时决策车辆应采取的合理驾驶行为,有效保证了高级别辅助驾驶系统的行车安全。
刘中姐,赵治国,于勤. 基于动态风险评估的车辆辅助驾驶行为决策[J]. 汽车工程, 2024, 46(11): 2005-2016.
Zhongjie Liu,Zhiguo Zhao,Qin Yu. Vehicle Assisted Driving Behavior Decision-Making Based on Dynamic Risk Assessment[J]. Automotive Engineering, 2024, 46(11): 2005-2016.
1 | 董汉, 舒伟, 陈超, 等. 危险驾驶工况场景的复杂度评估方法研究[J]. 汽车工程, 2020, 42(6): 808-814. |
DONG H, SHU W, CHEN C, et al. Research on the complexity evaluation method of dangerous driving scenario conditions[J]. Automotive Engineering, 2020, 42(6): 808-814. | |
2 | DENG H F, ZHAO Y Q, WANG Q W, et al. Deep reinforcement learning based decision-making strategy of autonomous vehicle in highway uncertain driving environments[J]. Automotive Innovation, 2023, 6(3): 438-452. |
3 | MAHMUD S M S, FERREIRA L, HOQUE M S, et al. Application of proximal surrogate indicators for safety evaluation: a review of recent developments and research needs[J]. IATSS Research, 2017, 41(4): 153-163. |
4 | 王建强, 吴剑, 李洋. 基于人-车-路协同的行车风险场概念、原理及建模[J]. 中国公路学报, 2016, 29(1): 105-114. |
WANG J Q, WU J, LI Y. Concept, principle and modeling of driving risk field based on driver-vehicle-road interaction[J]. China Journal of Highway and Transport, 2016, 29(1): 105-114. | |
5 | LI L H, GAN J, JI X K, et al. Dynamic driving risk potential field model under the connected and automated vehicles environment and its application in car-following modeling[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 122-141. |
6 | 王明强, 王震坡, 张雷. 基于碰撞风险评估的智能汽车局部路径规划方法研究[J]. 机械工程学报, 2021, 57(10): 28-41. |
WANG M Q, WANG Z P, ZHANG L. Local path planning for intelligent vehicles based on collision risk evaluation[J]. Journal of Mechanical Engineering, 2021, 57(10): 28-41. | |
7 | 田野, 裴华鑫, 晏松, 等. 车路协同环境下行车风险场模型的扩展与应用[J]. 清华大学学报(自然科学版), 2022, 62(3): 447-457. |
TIAN Y, PEI H X, YAN S, et al. Extended driving risk field model for i-VICS and its application[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(3): 447-457. | |
8 | LEE K, KUM D. Collision avoidance/mitigation system: motion planning of autonomous vehicle via predictive occupancy map[J]. IEEE Access, 2019, 7: 52846-52857. |
9 | LIU X L, WANG Y F, JIANG K, et al. Interactive trajectory prediction using a driving risk map-integrated deep learning method for surrounding vehicles on highways[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19076-19087. |
10 | SAE International, On-Road Automated Driving (ORAD) Committee. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles: SAE J3016_202104[S/OL]. [2023-03-10]. https://www.sae.org/standards/content/j3016_202104/. |
11 | 冀杰, 黄岩军, 李云伍, 等. 基于有限状态机的车辆自动驾驶行为决策分析[J]. 汽车技术, 2018(12): 1-7. |
JI J, HUANG Y J, LI Y W, et al. Decision-making analysis of autonomous driving behaviors for intelligent vehicles based on finite state machine[J]. Automobile Technology, 2018(12): 1-7. | |
12 | 陈慧, 王洁新. 基于驾驶人不满度的高速公路自动驾驶换道决策[J]. 中国公路学报, 2019, 32(12): 1-9. |
CHEN H, WANG J X. A decision-making method for lane changes of automated vehicles on freeways based on drivers’ dissatisfaction[J]. China Journal of Highway and Transport, 2019, 32(12): 1-9. | |
13 | HE X C, LV C. Towards safe autonomous driving: decision making with observation-robust reinforcement learning[J]. Automotive Innovation, 2023, 6(4): 509-520. |
14 | LIU Y G, WANG X, LI L, et al. A novel lane change decision-making model of autonomous vehicle based on support vector machine[J]. IEEE Access, 2019, 7: 26543-26550. |
15 | LI G F, YANG L, LI S, et al. Human-like decision making of artificial drivers in intelligent transportation systems: an end-to-end driving behavior prediction approach[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(6): 188-205. |
16 | 何仁, 赵晓聪, 王建强. 人-车-路交互下的驾驶人风险响应度建模[J]. 中国公路学报, 2020, 33(9): 236-250. |
HE R, ZHAO X C, WANG J Q. Modeling of driving risk response under human-vehicle-road interaction[J]. China Journal of Highway and Transport, 2020, 33(9): 236-250. | |
17 | WOLF M T, BURDICK J W. Artificial potential functions for highway driving with collision avoidance[C]. International Conference on Robotics and Automation (ICRA), 2008: 3731-3736. |
18 | KIM J, KUM D. Collision risk assessment algorithm via lane-based probabilistic motion prediction of surrounding vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2965-2976. |
19 | KRAJEWSKI R, BOCK J, KLOEKER L, et al. The highD dataset: a drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems[C]. International Conference on Intelligent Transportation Systems (ITSC), 2018: 2118-2125. |
20 | 季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6): 34-42. |
JI X W, FEI C, HE X K, et al. Intention recognition and trajectory prediction for vehicles using LSTM network[J]. China Journal of Highway and Transport, 2019, 32(6):34-42. | |
21 | JIAO Y R, CALVERT S C, VAN LINT H, et al. Identifying vehicle interaction at urban intersections: a comparison of proximity resistance, time-to-collision, and post-encroachment-time[C]. International Conference on Intelligent Transportation Systems (ITSC), 2023: 973-978. |
22 | KONDOH T, YAMAMURA T, KITAZAKI S, et al. Identification of visual cues and quantification of drivers' perception of proximity risk to the lead vehicle in car-following situations[J]. Journal of Mechanical Systems for Transportation and Logistics, 2008, 1(2): 170-180. |
23 | YANG J Y, LEE J, MAO S, et al. Dynamic safety estimation of airport pick-up area based on video trajectory data[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(2): 1774-1786. |
24 | JULA H, KOSMATOPOULOS E B, IOANNOU P A. Collision avoidance analysis for lane changing and merging[J]. IEEE Transactions on Vehicular Technology, 2000, 49(6): 2295-2308. |
25 | SHALEV-SHWARTZ S, SHAMMAH S, SHASHUA A. On a formal model of safe and scalable self-driving cars[EB/OL]. (2017-08-21). arXiv:1708.06374[2024-05-29]. Available from: https://arxiv.org/abs/1708.06374. |
[1] | 杨秀建,白永瑞. 基于图搜索与优化的动态非结构环境智能车辆轨迹规划[J]. 汽车工程, 2024, 46(9): 1564-1575. |
[2] | 范晓临,张旭东,邹渊,尹鑫,刘颖群. 一种基于简化可视图的建图和规划方法[J]. 汽车工程, 2024, 46(7): 1249-1258. |
[3] | 杨超,杨帆,王伟达,郄天琪,王彦松,王宏伟. 基于时空风险的智能驾驶车辆避险决策规划[J]. 汽车工程, 2024, 46(6): 975-984. |
[4] | 赵树恩,王盛,冷姚. 智能汽车轨迹跟踪多目标显式模型预测控制[J]. 汽车工程, 2024, 46(5): 784-794. |
[5] | 秦洪懋,江曙,张田田,谢和平,边有钢,李洋. 基于学习型模型预测控制的智能车辆路径跟踪控制[J]. 汽车工程, 2024, 46(10): 1804-1815. |
[6] | 马艳丽, 秦钦, 董方琦, 娄艺苧. 基于风险场的不同认知次任务下接管风险评估模型[J]. 汽车工程, 2024, 46(1): 9-17. |
[7] | 左政,王云鹏,麻斌,邹博松,曹耀光,杨世春. 基于AFC-TARA的车载网络组件风险率量化评估分析[J]. 汽车工程, 2023, 45(9): 1553-1562. |
[8] | 李达,邓钧君,张照生,刘鹏,王震坡. 电动车辆动力电池安全预警策略研究综述[J]. 汽车工程, 2023, 45(8): 1392-1407. |
[9] | 高翔,陈龙,王歆叶,熊晓夏,李祎承,陈月霞. 基于轨迹预测的智能汽车行驶风险评估方法[J]. 汽车工程, 2023, 45(4): 588-597. |
[10] | 吕彦直,魏超,何元浩. 基于GCN和CIL的端到端自动驾驶换道方法[J]. 汽车工程, 2023, 45(12): 2310-2317. |
[11] | 段顺昌,白先旭,石琴,李维汉,何冠男. 汽车自动紧急制动系统控制策略的预期功能安全设计[J]. 汽车工程, 2022, 44(9): 1305-1317. |
[12] | 陈浩,王红,李维汉,白先旭,陈炯,李楚照,石琴,孙骏. 基于行车安全场理论的预期功能安全场景风险评估[J]. 汽车工程, 2022, 44(11): 1636-1646. |
[13] | 黄圣杰,胡满江,周云水,殷周平,秦晓辉,边有钢,贾倩倩. 动态场景下基于语义分割与运动一致性约束的车辆视觉SLAM[J]. 汽车工程, 2022, 44(10): 1503-1510. |
[14] | 朱乃宣,高振海,胡宏宇,吕颖,赵伟光. 基于交通风险评估的个性化换道触发研究[J]. 汽车工程, 2021, 43(9): 1314-1321. |
[15] | 陈吉清,翁楚滨,兰凤崇. 智能车辆换道潜在冲突分析与风险量化方法[J]. 汽车工程, 2021, 43(11): 1565-1576. |
|