汽车工程 ›› 2024, Vol. 46 ›› Issue (5): 754-765.doi: 10.19562/j.chinasae.qcgc.2024.05.002

• • 上一篇    

高速公路混合交通环境下的智能网联汽车换道策略研究

刘永涛,孙斐然,袁诗泉,高隆鑫,曹莹,陈轶嵩,乔洁()   

  1. 长安大学汽车学院,西安 710064
  • 收稿日期:2023-09-04 修回日期:2023-11-12 出版日期:2024-05-25 发布日期:2024-05-17
  • 通讯作者: 乔洁 E-mail:qiaojie@chd.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB2501202);陕西省自然科学基础研究计划项目(2023-JC-QN-0664);陕西省“两链”融合重点专项揭榜挂帅项目(2023JBGS-13);中央高校基本科研业务项目(300102223204)

Research on the Intelligent Connected Vehicle Lane Changing Strategies in Mixed Traffic Environment of Expressway

Yongtao Liu,Feiran Sun,Shiquan Yuan,Longxin Gao,Ying Cao,Yisong Chen,Jie Qiao()   

  1. School of Automobile,Chang’an University,Xi’an 710064
  • Received:2023-09-04 Revised:2023-11-12 Online:2024-05-25 Published:2024-05-17
  • Contact: Jie Qiao E-mail:qiaojie@chd.edu.cn

摘要:

为推动智能网联汽车应用落地,提出高速公路混合交通环境下智能网联汽车换道策略。首先,改进NaSch元胞自动机模型,并采用马尔科夫链算法计算道路通行能力;其次,针对目标车道为专用车道和普通车道分别建立基于车速引导的决策模型和基于博弈论的双矩阵决策模型;最后,采用多目标轨迹优化算法优化换道轨迹。结果表明:目标车道为专用车道和普通车道时,所提出的策略可分别提高换道效率6%、3.38%。

关键词: 高速公路混合交通环境, 元胞自动机, 马尔科夫链, 博弈论, 轨迹规划

Abstract:

In order to promote the application of intelligent connected vehicles, the lane changing strategy of intelligent connected vehicles in mixed traffic environment of expressway is proposed. Firstly, the NaSch cellular automata model is improved and the Markov chain algorithm is used to calculate the road capacity. Secondly, for the target lane, the decision-making model based on vehicle speed guidance and the two-matrix decision-making model based on the game theory is established respectively for the dedicated lane and ordinary lane. Finally, the multi-objective trajectory optimization algorithm is used to optimize the lane change trajectory. The results show that the proposed strategy can improve the lane change efficiency by 6% and 3.38%, respectively, for the target dedicated lane and ordinary lane.

Key words: expressway mixed traffic environment, cellular automata, Markov chain, game theory, trajectory planning