汽车工程 ›› 2025, Vol. 47 ›› Issue (6): 1048-1059.doi: 10.19562/j.chinasae.qcgc.2025.06.004

• • 上一篇    

融合聚类与分类的退役锂离子电池快速分选

唐汉青1,王丽1,林名强2,武骥1()   

  1. 1.合肥工业大学汽车与交通工程学院,合肥 230009
    2.中国科学院福建物质结构研究所,晋江 362216
  • 收稿日期:2024-11-22 修回日期:2024-12-20 出版日期:2025-06-25 发布日期:2025-06-20
  • 通讯作者: 武骥 E-mail:wu.ji@hfut.edu.cn
  • 基金资助:
    第二十七届中国科协年会学术论文。教育部春晖计划合作科研项目(HZKY20220200);中央高校基本科研业务费(JZ2023YQTD0073)

Rapid Sorting of Retired Lithium-Ion Batteries by Integrating Clustering and Classification

Hanqing Tang1,Li Wang1,Mingqiang Lin2,Ji Wu1()   

  1. 1.School of Automotive and Transportation Engineering,Hefei University of Technology,Hefei 230009
    2.Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Jinjiang 362216
  • Received:2024-11-22 Revised:2024-12-20 Online:2025-06-25 Published:2025-06-20
  • Contact: Ji Wu E-mail:wu.ji@hfut.edu.cn

摘要:

为提高退役电池分选效率并减少数据采集成本,本文旨在通过使用不完备数据来实现接近完备数据的分选效果,由此提出了一种融合聚类和分类的退役电池快速分选方法。首先通过完备数据进行聚类分析,对电池进行初步分组,将分组结果作为电池标签;其次从不完备数据集中挑选最有价值片段,训练双层分类模型进行分类拟合,从而实现退役锂离子电池的快速分选;最后对235块锂离子电池进行了验证实验。结果表明所提出的方法具有95.1%的分类检测精度,并且显著减少分选所需时间。

关键词: 锂离子电池, 退役电池, 电池分选, 聚类, 电化学阻抗谱

Abstract:

In order to improve the sorting efficiency of retired batteries and reduce data collection cost, to achieve a sorting effect close to complete data by using incomplete data, in this paper, a fast sorting method for retired batteries that integrates clustering and classification is proposed. Firstly, cluster analysis is conducted on complete data to preliminarily group the batteries, and the grouping results are used as battery labels. Secondly, the most valuable segments are selected from incomplete datasets, and a two-layer classification model is trained for classification fitting, thereby achieving rapid sorting of retired lithium-ion batteries. Finally, a validation experiment is conducted on 235 lithium-ion batteries, and the results show that the proposed method has a classification detection accuracy of 95.1% and significantly reduces the time required for sorting.

Key words: lithium-ion battery, retired batteries, battery sorting, clustering, electrochemical impedance spectroscopy