汽车工程 ›› 2025, Vol. 47 ›› Issue (7): 1305-1316.doi: 10.19562/j.chinasae.qcgc.2025.07.008

• • 上一篇    

基于插电式燃料电池公交车能量管理策略

连静,杨鹏,李琳辉(),周雅夫,孙雪松   

  1. 大连理工大学机械工程学院,大连 116024
  • 收稿日期:2025-01-17 修回日期:2025-03-02 出版日期:2025-07-25 发布日期:2025-07-18
  • 通讯作者: 李琳辉 E-mail:lilinhui@dlut.edu.cn
  • 基金资助:
    第二十七届中国科协年会学术论文。大连市科技创新基金(2018J12GX061)

Energy Management Strategy Based on Plug-In Fuel Cell Buses

Jing Lian,Peng Yang,Linhui Li(),Yafu Zhou,Xuesong Sun   

  1. School of Mechanical Engineering,Dalian University of Technology,Dalian 116024
  • Received:2025-01-17 Revised:2025-03-02 Online:2025-07-25 Published:2025-07-18
  • Contact: Linhui Li E-mail:lilinhui@dlut.edu.cn

摘要:

针对庞特里亚金极小值原理(Pontryagin's minimum principle, PMP)仅适用于离线计算且难以实车应用的问题,提出了一种基于麻雀搜索优化密度聚类(density-based spatial clustering of applications with noise, DBSCAN)的工况在线识别能量管理策略。该策略结合离线训练与在线控制,并充分利用公交车线路固定性与片段性特征,以公交站为节点,将线路划分为多个驾驶片段。在车辆靠站期间,对上一个驾驶片段的电机输出功率进行工况识别,从而计算下一个驾驶片段的协态变量(co-state);在车辆开始运行时,将计算好的co-state应用于PMP算法中完成功率的实时分配。最后,通过构建基于实车数据的仿真实验,将所提出的策略移植到整车控制器中。结果显示,与当前实车运行的规则能量管理策略相比,该策略可减少等效氢耗17.6%,并能有效维持动力电池荷电状态(state of charge, SOC)。且每步计算均在60 ms以内,具有良好的实时性,能够满足燃料电池公交车实际运行中对能量管理策略的应用要求。

关键词: 能量管理, 工况识别, 密度聚类, 庞特里亚金极值, 硬件在环

Abstract:

For the problem that Pontryagin's Minimum Principle (PMP) is only applicable to offline calculation and difficult to be applied in real vehicles, an energy management strategy for online identification of working conditions based on density clustering (DBSCAN) is proposed. This strategy combines offline training with online control, and makes full use of the fixed and fragmentary characteristics of bus routes, using the bus stops as nodes to divide the routes into multiple driving segments. During the vehicle's stop, the motor output power of the previous driving segment is identified to calculate the co-state of the next driving segment. When the vehicle starts running, the calculated co-state is applied to the PMP algorithm to complete the real-time power distribution. Finally, by constructing the simulation experiment based on real vehicle data, the proposed strategy is transplanted into the vehicle controller. The results show that compared with the current regular energy management strategy for real vehicle operation, the proposed strategy can reduce the equivalent hydrogen consumption by 17.6% and effectively maintain the state of charge (SOC) of the power battery. Moreover, each calculation step is within 60 ms, which has good real-time performance and can meet the application requirements of energy management strategies in the actual operation of fuel cell buses.

Key words: energy management, condition identification, density clustering, Pontryagin’s maximum principle, hardware in loop