[1] MI C, MASRUR M A, GAO D W. Hybrid electric vehicles: principles and applications with practical perspectives[M]. John Wiley & Sons,2011. [2] EHSANI M, GAO Y, EMADI A. Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design[M]. CRC Press,2009. [3] Da ROSA A V. Fundamentals of renewable energy processes[M]. Academic Press,2012. [4] 唐葆君,马也.“十三五”北京市新能源汽车节能减排潜力[J].北京理工大学学报:社会科学版,2016,18(2):13-17. [5] 李泉.锂离子动力电池管理系统关键技术研究[D].长沙:湖南大学,2017. [6] SERGIO M, FLORIN M. Electric vehicle battery technologies: from present state to future systems[J]. Renewable and Sustainable Energy Reviews,2015,51:1004-1012. [7] 赵瑞瑞,余乐,常毅,等.锂离子电池技术研究进展与应用[M].北京:化学工业出版社,2017:244-253. [8] ANGEL K. Battery management and battery diagnostics[M]. Elsevier Inc.:2015-06-15. [9] 麻友良,陈全世,齐占宁.电动汽车用电池SOC定义与检测方法[J].清华大学学报:自然科学版,2001(11):95-97,105. [10] 徐颖,沈英.基于改进卡尔曼滤波的电池SOC估算[J].北京航空航天大学学报,2014,40(6):855-860. [11] 商云龙,张承慧,崔纳新,等.基于模糊神经网络优化扩展卡尔曼滤波的锂离子电池荷电状态估计[J].控制理论与应用,2016,33(2):212-220. [12] 张云,张承慧,崔纳新.锂离子电池荷电状态估计:非线性观测器方法[J].控制理论与应用,2012,29(12):1639-1644. [13] 李哲,卢兰光,欧阳明高.提高安时积分法估算电池SOC精度的方法比较[J].清华大学学报:自然科学版,2010,50(8):1293-1296,1301. [14] 刘文杰,齐国光.基于模糊理论的电池故障诊断专家系统[J].吉林大学学报:信息科学版,2005,23(6):104-108. [15] 葛云龙,陈自强,郑昌文.UTSTF锂离子电池时变参数估计与故障诊断[J].浙江大学学报:工学版,2018,52(6):1223-1230. [16] AURBACH D, ZINIGRAD E, COHEN Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, Diffusion & Reactions,2002,148(3-4):405-416. [17] ALAVI S, SAMADI M, SAIF M F. Diagnostics in lithium-ion batteries: challenging issues and recent achievements[M]. Integration of Practice-Oriented Knowledge Technology: Trends and Prospectives. Heidelberg, Germany: Springer,2013:277-291. [18] MARCICKI J, ONORI S, RIZZONI G. Nonlinear fault detection and isolation for a lithium-ion battery management system[C]. Proc. ASME Dyn. Syst. Control Conf,2010:607-614. [19] SINGH A, IZADIAN A, ANWAR S. Fault diagnosis fo li-ion batteries using multiple-model adaptive estimation[C]. Proc. 39th Annu. Conf. IEEE IECON, Nov.2013:3524-3529. [20] MUKHOPADHYAY S, ZHANG F. Adaptive detection of terminal voltage collapses for Li-ion batteries[C]. Proc. IEEE 51st Annu. Conf. Decision Control, Dec.2012:4799-4804. [21] CHEN W, CHEN W, SAIF M, et al. Simultaneous fault isolation and estimation of lithium-ion batteries via synthesized design of Luenberger and learning observers[J]. IEEE Trans. Control Syst. Technol.,2014,22(1):290-298. [22] LOMBARDI W, ZARUDNIEV M, LESECQ S, et al. Sensors fault diagnosis for a BMS[C]. Proc. Eur. Control Conf.2014:952-957. [23] CHOW E Y, WILLSKY A S. Analytical redundancy and the design of robust failure detection systems[J]. IEEE Transactions on Automatic Control,1984,29(7):603-614. [24] 刘剑慰,姜斌.基于动态奇偶空间法的传感器故障诊断[J].控制工程,2012,19(5):870-872,876. [25] 吕亮.基于模型的汽车主动悬架故障诊断研究[D].长沙:湖南大学,2018. [26] HWANG W, HUH K, KIM M, et al. Sensor fault diagnosis for EMB using parity space approach[C]. SAE Paper 2012-01-1794. [27] HU X, LI S, PENG H. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources,2012,198:359-367. [28] 陈全世,林成涛.电动汽车用电池性能模型研究综述[J].汽车技术,2005(3):1-5. [29] HAN H C, XU H P, YUAN Z Q. Modeling for lithium-ion battery used in electric vehicles[C]. Transportation Electrification Asia-Pacific (ITEC Asia-Pacific),2014 IEEE Conference and Expo,2014. [30] Limoge Damas Wilks. Reduced-order modeling and adaptive observer design for lithium-ion battery cells[D]. Massachusetts Institute of Technology,2017. |