Automotive Engineering ›› 2022, Vol. 44 ›› Issue (1): 26-35.doi: 10.19562/j.chinasae.qcgc.2022.01.004
Special Issue: 智能网联汽车技术专题-感知&HMI&测评2022年
Previous Articles Next Articles
Xiangteng Xia,Dafang Wang(),Jiang Cao,Gang Zhao,Jingming Zhang
Received:
2021-10-11
Revised:
2021-10-25
Online:
2022-01-25
Published:
2022-01-21
Contact:
Dafang Wang
E-mail:13863009863@163.com
Xiangteng Xia,Dafang Wang,Jiang Cao,Gang Zhao,Jingming Zhang. Semantic Segmentation Method of On-board Lidar Point Cloud Based on Sparse Convolutional Neural Network[J].Automotive Engineering, 2022, 44(1): 26-35.
1 | 何汉. 三维点云语义分割技术研究[D].成都:电子科技大学,2020. |
HE H. Research on semantic segmentation of 3D point cloud[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
2 | GUO Y, WANG H, HU Q, et al. Deep learning for 3D point clouds: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, 2020. |
3 | SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]. Proceedings of the IEEE international conference on computer vision. 2015: 945-953. |
4 | WU B, WAN A, YUE X, et al. SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]. 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 1887-1893. |
5 | IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:, 2016. |
6 | WU B, ZHOU X, ZHAO S, et al. SqueezeSegV2: improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud[C]. 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 4376-4382. |
7 | XU C, WU B, WANG Z, et al. SqueezeSegV3: Spatially-adaptive convolution for efficient point-cloud segmentation[C]. European Conference on Computer Vision. Springer, Cham, 2020: 1-19. |
8 | CORTINHAL T, TZELEPIS G, AKSORY E, et al. SalsaNext: fast, uncertainty-aware semantic segmentation of lidar point clouds for autonomous driving[J]. arXiv preprint arXiv:, 2020. |
9 | HUANG J, YOU S. Point cloud labeling using 3D Convolutional neural network[C]. 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016: 2670-2675. |
10 | MENG H, GAO L, LAI Y, et al. VV-Net: voxel vae net with group convolutions for point cloud segmentation[C]. 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019: 8500-8508. |
11 | GRAHAM B, ENGELCKE M, MAATEN L. 3D semantic segmentation with submanifold sparse convolutional networks[C]. 2018 IEEE conference on computer vision and pattern recognition. IEEE, 2018: 9224-9232. |
12 | CHOY C, GWAK J, SAVARESE S, et al. 4D spatio-temporal convnets: minkowski convolutional neural networks[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2019: 3075-3084. |
13 | ZHU X, ZHOU H, WANG T, et al. Cylindrical and asymmetrical 3D convolution networks for lidar segmentation[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021: 9939:9948. |
14 | QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3d classification and segmentation[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017: 77-85. |
15 | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]. 31st International Conference on Neural Information Processing Systems. Curran Associates Inc:, 2017: 5099-5108. |
16 | THOMAS H, R.QI C, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]. 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019: 6411-6420. |
17 | HU Q, YANG B, XIE L, et al. Randla-net: efficient semantic segmentation of large-scale point clouds[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020: 11108-11117. |
18 | LIU Z, TANG H, LIN Y, et al. Point-voxel cnn for efficient 3D deep learning[J]. arXiv preprint arXiv:, 2019. |
19 | KOCHANOV D, NEJADASL F K, BOOIJ O, et al. KPRNet: improving projection-based LiDAR semantic segmentation[J]. arXiv preprint arXiv:, 2020. |
20 | SANDLER M, HOWARD A, ZHU M, et al. MobilenetV2: Inverted residuals and linear bottlenecks[C]. 2018 IEEE conference on computer vision and pattern recognition. 2018: 4510-4520. |
21 | WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]. 2018 European conference on computer vision (ECCV). IEEE,2018: 3-19. |
22 | BEHLEY J, GARBADE M, MILIOTO A, et al. Semantickitti: a dataset for semantic scene understanding of Lidar sequences[C]. 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019: 9297-9307. |
23 | PAN Y, GAO B, MEI J, et al. SemanticPOSS: a point cloud dataset with large quantity of dynamic instances[C]. 2020 IEEE Intelligent Vehicles Symposium. Las Vegas, NV, USA: IEEE, 2020: 687-693. |
24 | LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[C]. 2019 International Conference on Learning Representations. New Orleans. Springer International Publishing, 2019 : 453-461. |
25 | YAN X, GAO J, LI J, et al. Sparse single sweep LiDAR point cloud segmentation via learning contextual shape priors from scene completion[J]. arXiv preprint arXiv:, 2020. |
[1] | Teng Cheng,Hao Ni,Qiang Zhang,Wenchong Wang,Qin Shi. Two-Stage Multimodal Fusion Networks Based on Virtual Point Clouds [J]. Automotive Engineering, 2024, 46(2): 222-229. |
[2] | Xiaocong Zhao,Shiyu Fang,Zirui Li,Jian Sun. Extraction and Application of Key Utility Term for Social Driving Interaction [J]. Automotive Engineering, 2024, 46(2): 230-240. |
[3] | Yanli Ma, Qin Qin, Fangqi Dong, Yining Lou. Takeover Risk Assessment Model Based on Risk Field Theory Under Different Cognitive Secondary Tasks [J]. Automotive Engineering, 2024, 46(1): 9-17. |
[4] | Zuliang Jin,Hanbing Wei,Liu Zheng,Lu Lou,Guofeng Zheng. Lightweight Semantic Segmentation Method Based on Local Window Cross Attention [J]. Automotive Engineering, 2023, 45(9): 1617-1625. |
[5] | Weiguo Liu,Zhiyu Xiang,Weiping Liu,Daoxin Qi,Zixu Wang. Research on Vehicle Control Algorithm Based on Distributed Reinforcement Learning [J]. Automotive Engineering, 2023, 45(9): 1637-1645. |
[6] | Ming Wang,Xiaolin Tang,Kai Yang,Guofa Li,Xiaosong Hu. A Motion Planning Method for Autonomous Vehicles Considering Prediction Risk [J]. Automotive Engineering, 2023, 45(8): 1362-1372. |
[7] | Wenguang Wu,Shuangyue Tian,Zhiyong Zhang,Bin Zhang. Research on Semantic Segmentation of Uneven Features of Unpaved Road [J]. Automotive Engineering, 2023, 45(8): 1468-1478. |
[8] | Dongyu Zhao, Shuen Zhao. Autonomous Driving 3D Object Detection Based on Cascade YOLOv7 [J]. Automotive Engineering, 2023, 45(7): 1112-1122. |
[9] | Lei Zhang, Keren Guan, Xiaolin Ding, Pengyu Guo, Zhenpo Wang, Fengchun Sun. Tire-Road Friction Estimation Method Based on Image Recognition and Dynamics Fusion [J]. Automotive Engineering, 2023, 45(7): 1222-1234. |
[10] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[11] | Lisheng Jin,Guangde Han,Xianyi Xie,Baicang Guo,Guofeng Liu,Wentao Zhu. Review of Autonomous Driving Decision-Making Research Based on Reinforcement Learning [J]. Automotive Engineering, 2023, 45(4): 527-540. |
[12] | Zhongsheng Chen,Chaolin Li,Wang Zuo,Xinglin Hou. Study on Improved Point Cloud Registration Algorithm Enhanced by Double Down-sampling [J]. Automotive Engineering, 2023, 45(4): 572-578. |
[13] | Qingyang Huang,Xiaoping Jin,Yikang Zhang. Analysis of Drivers' Driving Posture Change Rule Under the Condition of Automatic Driving Level Improvement [J]. Automotive Engineering, 2023, 45(3): 382-392. |
[14] | Zhengfa Liu,Ya Wu,Peigen Liu,Rongqi Gu,Guang Chen. Cross-Domain Object Detection for Intelligent Driving Based on Joint Distribution Matching of Features and Labels [J]. Automotive Engineering, 2023, 45(11): 2082-2091. |
[15] | Pulei Xu,Yingfeng Cai,Yubo Lian,Xiaoqiang Sun,Hai Wang,Long Chen,Yilin Zhong. AFS/DYC Coordinated Control of Intelligent Vehicles Based on Improved Hierarchical Extensibility Theory [J]. Automotive Engineering, 2023, 45(1): 20-31. |
|