Automotive Engineering ›› 2022, Vol. 44 ›› Issue (8): 1173-1182.doi: 10.19562/j.chinasae.qcgc.2022.08.007
Special Issue: 智能网联汽车技术专题-感知&HMI&测评2022年
Previous Articles Next Articles
Runhui Huang,Likun Hu(),Mingfang Su,Daye Xu,Aoran Chen
Received:
2022-03-07
Revised:
2022-04-06
Online:
2022-08-25
Published:
2022-08-25
Contact:
Likun Hu
E-mail:hlk3email@163.com
Runhui Huang,Likun Hu,Mingfang Su,Daye Xu,Aoran Chen. Semantic Segmentation Method of LiDAR Point Cloud Based on 3D Conical Grid[J].Automotive Engineering, 2022, 44(8): 1173-1182.
"
算法 | mIoU/ % | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Darknet53[ | 49.9 | 86.4 | 24.5 | 32.7 | 25.5 | 22.6 | 36.2 | 33.6 | 4.7 | 91.8 | 64.8 | 74.6 | 27.9 | 84.1 | 55.0 | 78.3 | 50.1 | 64.0 | 38.9 | 52.2 |
RandLA-Net[ | 50.3 | 94.0 | 19.8 | 21.4 | 42.7 | 38.7 | 47.5 | 48.8 | 4.6 | 90.4 | 56.9 | 67.9 | 15.5 | 81.1 | 49.7 | 78.3 | 60.3 | 59.0 | 44.2 | 38.1 |
RangeNet++[ | 52.2 | 91.4 | 25.7 | 34.4 | 25.7 | 23.0 | 38.3 | 38.8 | 4.8 | 91.8 | 65.0 | 75.2 | 27.8 | 87.4 | 58.6 | 80.5 | 55.1 | 64.6 | 47.9 | 55.9 |
PolarNet[ | 54.3 | 93.8 | 40.3 | 30.1 | 22.9 | 28.5 | 43.2 | 40.2 | 5.6 | 90.8 | 61.7 | 74.4 | 21.7 | 90.0 | 61.3 | 84.0 | 65.5 | 67.8 | 51.8 | 57.5 |
MinkNet42[ | 54.3 | 94.3 | 23.1 | 26.2 | 26.1 | 26.7 | 43.1 | 36.4 | 7.9 | 91.1 | 63.8 | 69.7 | 29.3 | 92.7 | 57.1 | 83.7 | 68.4 | 64.7 | 57.3 | 60.1 |
KPConv[ | 58.8 | 92.5 | 38.7 | 36.5 | 29.6 | 33.0 | 45.6 | 46.2 | 20.1 | 91.7 | 63.4 | 74.8 | 26.4 | 89.0 | 59.4 | 82.0 | 58.7 | 65.4 | 49.6 | 58.9 |
Salsanex[ | 59.5 | 91.9 | 48.3 | 38.6 | 38.9 | 31.9 | 60.2 | 59.0 | 19.4 | 91.7 | 63.7 | 75.8 | 29.1 | 90.2 | 64.2 | 81.8 | 63.6 | 66.5 | 54.3 | 62.1 |
FusionNet[ | 61.3 | 95.3 | 47.5 | 37.7 | 41.8 | 34.5 | 59.5 | 56.8 | 11.9 | 91.8 | 68.8 | 77.1 | 30.8 | 92.5 | 69.4 | 84.5 | 69.8 | 68.5 | 60.4 | 66.5 |
Cylinder3D[ | 67.8 | 97.1 | 67.6 | 64.0 | 59.0 | 58.6 | 73.9 | 67.9 | 36.0 | 91.4 | 65.1 | 75.5 | 32.3 | 91.0 | 66.5 | 85.4 | 71.8 | 68.5 | 62.6 | 65.6 |
(AF)2-S3Net[ | 69.7 | 94.5 | 65.4 | 86.8 | 39.2 | 41.1 | 80.7 | 80.4 | 74.3 | 91.3 | 68.8 | 72.5 | 53.5 | 87.9 | 63.2 | 70.2 | 68.5 | 53.7 | 61.5 | 71.0 |
本文算法 | 71.0 | 97.3 | 73.5 | 72.1 | 49.3 | 58.5 | 79.8 | 82.8 | 23.6 | 92.9 | 73.0 | 79.7 | 27.1 | 91.8 | 68.5 | 86.9 | 75.8 | 72.0 | 70.0 | 75.1 |
"
算法 | mIoU/% | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PolarNet[ | 69.4 | 72.2 | 16.8 | 77.0 | 86.5 | 51.1 | 69.7 | 64.8 | 54.1 | 69.7 | 63.5 | 96.6 | 67.1 | 77.7 | 72.1 | 87.1 | 84.5 |
JS3C-Net[ | 73.6 | 80.1 | 26.2 | 87.8 | 84.5 | 55.2 | 72.6 | 71.3 | 66.3 | 76.8 | 71.2 | 96.8 | 64.5 | 76.9 | 74.1 | 87.5 | 86.1 |
Cylinder3D[ | 77.2 | 82.8 | 29.8 | 84.3 | 89.4 | 63.0 | 79.3 | 77.2 | 73.4 | 84.6 | 69.1 | 97.7 | 70.2 | 80.3 | 75.5 | 90.4 | 87.6 |
AMVNet[ | 77.4 | 80.6 | 32.0 | 81.7 | 88.9 | 67.1 | 84.3 | 76.1 | 73.5 | 84.9 | 67.3 | 97.5 | 67.4 | 79.4 | 75.5 | 91.5 | 88.7 |
本文算法 | 78.2 | 82.2 | 34.7 | 84.0 | 87.5 | 71.4 | 83.2 | 78.9 | 74.2 | 85.0 | 68.3 | 97.4 | 68.7 | 79.8 | 75.9 | 91.6 | 88.6 |
1 | BEHLEY J, GARBADE M, MILIOTO A, et al. SemanticKITTI: a dataset for semantic scene understanding of LIDAR sequences[C]. 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019: 9297-9307. |
2 | CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]. 2020 IEEE/CVF International Conference on Computer Vision. IEEE, 2020: 11621-11631. |
3 | HACKEL T, SAVINOV N, LADICKY L, et al. Semantic3d. net: a new large-scale point cloud classification benchmark[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-1/W1: 91–98. |
4 | WU B, WAN A, YUE X, et al. SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LIDAR point cloud[C]. 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 1887-1893. |
5 | WU B, ZHOU X, ZHAO S, et al. SqueezeSegV2: improved model structure and unsupervised domain adaptation for road-object segmentation from a LIDAR point cloud[C]. 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 4376-4382. |
6 | XU C, WU B, WANG Z, et al. SqueezeSegV3: spatially-adaptive convolution for efficient point-cloud segmentation[C]. European Conference on Computer Vision. Springer, Cham, 2020: 1-19. |
7 | MILIOTO A, VIZZO I, BEHLEY J, et al. RangeNet++: fast and accurate LIDAR semantic segmentation[C]. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 4213-4220. |
8 | REDMON J, FARHADI A. YOLOV3: an incremental improvement[J]. arXiv preprint arXiv:, 2018. |
9 | ZHANG Y, ZHOU Z, DAVID P, et al. PolarNet: an improved grid representation for online LIDAR point clouds semantic segmentation[C]. 2020 IEEE/CVF International Conference on Computer Vision. IEEE, 2020: 9601-9610. |
10 | MATURANA D, SCHERER S. Voxnet: A 3D convolutional neural network for real-time object recognition[C]. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015: 922-928. |
11 | GRAHAM B, ENGELCKE M, VAN DER MAATEN L. 3D semantic segmentation with submanifold sparse convolutional networks[C]. 2018 IEEE/CVF International Conference on Computer Vision. IEEE, 2018: 9224-9232. |
12 | CHOY C, GWAK J Y, SAVARESE S. 4D spatio-temporal convnets: minkowski convolutional neural networks[C]. 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019: 3075-3084. |
13 | ZHU X, ZHOU H, WANG T, et al. Cylindrical and asymmetrical 3D convolution networks for lidar segmentation[C]. 2021 IEEE/CVF International Conference on Computer Vision. IEEE, 2021: 9939-9948.. |
14 | CHENG R, RAZANI R, TAGHAVI E, et al. (AF)2-S3Net: attentive feature fusion with adaptive feature selection for sparse semantic segmentation network[C]. 2021 IEEE/CVF International Conference on Computer Vision. IEEE, 2021: 12547-12556. |
15 | QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3d classification and segmentation[C]. 2017 IEEE/CVF International Conference on Computer Vision. IEEE, 2017: 652-660. |
16 | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. 31st Internation‐al Conference on Neural Information Processing Systems. CurranAssociates Inc:, 2017:5099-5108. |
17 | THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]. 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019: 6411-6420. |
18 | HU Q, YANG B, XIE L, et al. Randla-net: efficient semantic segmentation of large-scale point clouds[C]. 2020 IEEE/CVF International Conference on Computer Vision. IEEE, 2020: 11108-11117. |
19 | LIU Y, FAN B, MENG G, et al. Densepoint: learning densely contextual representation for efficient point cloud processing[C]. 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019: 5239-5248. |
20 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C].2017 IEEE/CVF International Conference on Computer Vision. IEEE, 2017: 4700-4708. |
21 | DING X, ZHANG X, MA N, et al. Repvgg: making vgg-style convnets great again[C]. 2021 IEEE/CVF International Conference on Computer Vision. IEEE, 2021: 13733-13742. |
22 | LI J, LIU Y, YUAN X, et al. Depth based semantic scene completion with position importance aware loss[J]. IEEE Robotics and Automation Letters, 2019, 5(1): 219-226. |
23 | FAN Y, LYU S, YING Y, et al. Learning with average top-k loss[J]. Advances in Neural Information Processing Systems, 2017, 30. |
24 | BERMAN M, TRIKI A R, BLASCHKO M B. The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks[C]. 2018 IEEE/CVF International Conference on Computer Vision. 2018: 4413-4421. |
25 | CORTINHAL T, TZELEPIS G, ERDAL AKSOY E. SalsaNext: fast, uncertainty-aware semantic segmentation of LiDAR point clouds[C]. International Symposium on Visual Computing. Springer, Cham, 2020: 207-222. |
26 | ZHANG F,FANG J,WAH B,et al. Deep fusionnet for pointcloud semantic segmentation[C]. Computer Vision-ECCV2020:16th European Conference,Glasgow,UK,August 23–28,2020,Proceedings,Part XXIV 16. Springer International Publishing,2020:644-663. |
27 | YAN X, GAO J, LI J, et al. Sparse single sweep LIDAR point cloud segmentation via learning contextual shape priors from scene completion[J]. arXiv preprint arXiv:, 2020. |
28 | LIONG V E, NGUYEN T N T, WIDJAJA S, et al. AMVNet: assertion-based multi-view fusion network for LIDAR semantic segmentation[J]. arXiv preprint arXiv:, 2020. |
[1] | Xiaocong Zhao,Shiyu Fang,Zirui Li,Jian Sun. Extraction and Application of Key Utility Term for Social Driving Interaction [J]. Automotive Engineering, 2024, 46(2): 230-240. |
[2] | Yanli Ma, Qin Qin, Fangqi Dong, Yining Lou. Takeover Risk Assessment Model Based on Risk Field Theory Under Different Cognitive Secondary Tasks [J]. Automotive Engineering, 2024, 46(1): 9-17. |
[3] | Zuliang Jin,Hanbing Wei,Liu Zheng,Lu Lou,Guofeng Zheng. Lightweight Semantic Segmentation Method Based on Local Window Cross Attention [J]. Automotive Engineering, 2023, 45(9): 1617-1625. |
[4] | Weiguo Liu,Zhiyu Xiang,Weiping Liu,Daoxin Qi,Zixu Wang. Research on Vehicle Control Algorithm Based on Distributed Reinforcement Learning [J]. Automotive Engineering, 2023, 45(9): 1637-1645. |
[5] | Ming Wang,Xiaolin Tang,Kai Yang,Guofa Li,Xiaosong Hu. A Motion Planning Method for Autonomous Vehicles Considering Prediction Risk [J]. Automotive Engineering, 2023, 45(8): 1362-1372. |
[6] | Wenguang Wu,Shuangyue Tian,Zhiyong Zhang,Bin Zhang. Research on Semantic Segmentation of Uneven Features of Unpaved Road [J]. Automotive Engineering, 2023, 45(8): 1468-1478. |
[7] | Dongyu Zhao, Shuen Zhao. Autonomous Driving 3D Object Detection Based on Cascade YOLOv7 [J]. Automotive Engineering, 2023, 45(7): 1112-1122. |
[8] | Lei Zhang, Keren Guan, Xiaolin Ding, Pengyu Guo, Zhenpo Wang, Fengchun Sun. Tire-Road Friction Estimation Method Based on Image Recognition and Dynamics Fusion [J]. Automotive Engineering, 2023, 45(7): 1222-1234. |
[9] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[10] | Lisheng Jin,Guangde Han,Xianyi Xie,Baicang Guo,Guofeng Liu,Wentao Zhu. Review of Autonomous Driving Decision-Making Research Based on Reinforcement Learning [J]. Automotive Engineering, 2023, 45(4): 527-540. |
[11] | Qingyang Huang,Xiaoping Jin,Yikang Zhang. Analysis of Drivers' Driving Posture Change Rule Under the Condition of Automatic Driving Level Improvement [J]. Automotive Engineering, 2023, 45(3): 382-392. |
[12] | Zhengfa Liu,Ya Wu,Peigen Liu,Rongqi Gu,Guang Chen. Cross-Domain Object Detection for Intelligent Driving Based on Joint Distribution Matching of Features and Labels [J]. Automotive Engineering, 2023, 45(11): 2082-2091. |
[13] | Pulei Xu,Yingfeng Cai,Yubo Lian,Xiaoqiang Sun,Hai Wang,Long Chen,Yilin Zhong. AFS/DYC Coordinated Control of Intelligent Vehicles Based on Improved Hierarchical Extensibility Theory [J]. Automotive Engineering, 2023, 45(1): 20-31. |
[14] | Zhenhai Gao,Xiangtong Yan,Fei Gao. A Decision-making Method for Longitudinal Autonomous Driving Based on Inverse Reinforcement Learning [J]. Automotive Engineering, 2022, 44(7): 969-975. |
[15] | Dafang Wang,Jingdong Du,Jiang Cao,Mei Zhang,Gang Zhao. Research on Style Transfer Network for Autonomous Driving Data Generation [J]. Automotive Engineering, 2022, 44(5): 684-690. |