汽车工程 ›› 2022, Vol. 44 ›› Issue (10): 1469-1483.doi: 10.19562/j.chinasae.qcgc.2022.10.001

所属专题: 智能网联汽车技术专题-规划&控制2022年

• •    下一篇

基于车辆动力学混合模型的智能汽车轨迹跟踪控制方法

方培俊1,蔡英凤1(),陈龙1,廉玉波2,王海3,钟益林2,孙晓强1   

  1. 1.江苏大学汽车工程研究院,镇江  212013
    2.比亚迪汽车工业有限公司,深圳  518118
    3.江苏大学汽车与交通工程学院,镇江  212013
  • 收稿日期:2022-04-07 修回日期:2022-04-21 出版日期:2022-10-25 发布日期:2022-10-21
  • 通讯作者: 蔡英凤 E-mail:caicaixiao0304@126.com
  • 基金资助:
    国家自然科学基金(U20A20333);江苏省重点研发计划(BE2020083-3);江苏省六大人才高峰项目(2018-TD-GDZB-022)

Trajectory Tracking Control Method Based on Vehicle Dynamics Hybrid Model for Intelligent Vehicle

Peijun Fang1,Yingfeng Cai1(),Long Chen1,Yubo Lian2,Hai Wang3,Yilin Zhong2,Xiaoqiang Sun1   

  1. 1.Automotive Engineering Research Institute of Jiangsu University,Zhenjiang  212013
    2.BYD Auto Industry Co. ,Ltd. ,Shenzhen  518118
    3.School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang  212013
  • Received:2022-04-07 Revised:2022-04-21 Online:2022-10-25 Published:2022-10-21
  • Contact: Yingfeng Cai E-mail:caicaixiao0304@126.com

摘要:

基于机理分析的车辆动力学建模过程通常进行简化及假设,无法准确计算实际车辆在不同道路条件下的动力学变化,进而导致智能汽车轨迹跟踪控制精度低、不稳定等问题。鉴于此,本文中提出了一种基于混合建模技术的非线性建模与控制方法,构建机理分析-数据驱动的车辆动力学串联混合模型,车辆状态与控制数据经机理模型实现计算处理,级联合并后作为数据驱动模块的输入,长短时记忆网络作为主干网络实现时序数据的非线性关联特征提取和最终的模型输出计算。测试结果表明,该模型可以补充计算机理模型中的部分未建模动态并提高模型计算精度,且具有隐式理解不同路面附着条件的能力。其次,使用Euler积分完成对预测模型的离散化并设计模型预测控制轨迹跟踪算法,设计前馈反馈控制算法在实现车辆的纵向控制的同时提供横向控制中预测模型所需的外部输入,最终实现更符合实际行驶环境且更精准的轨迹跟踪控制效果。CarSim/Simulink联合仿真结果表明,该方法实现了不同道路附着系数下控制量精确输出,同步提升了智能汽车轨迹跟踪控制精度和稳定性,具有良好的横纵向协调控制效果。

关键词: 智能汽车, 轨迹跟踪, 数据驱动建模, 模型预测控制

Abstract:

The vehicle dynamics modeling process based on mechanism analysis is usually simplified with assumptions,which can't accurately calculate the dynamic changes of actual vehicles under different road conditions, thus causing problems such as low trajectory tracking control accuracy and instability of intelligent automotive. To tackle the above-mentioned problems, this paper proposes a non-linear modeling and control method based on hybrid modeling technology. By constructing mechanism analysis - data-driven vehicle dynamics series hybrid model, the vehicle state and control data are calculated and processed by the mechanism model, and then used as the input of the data-driven module after a level combination. Besides, long-short-term memory network used as the backbone realizes the nonlinear correlation feature extraction of time-series data and the final model output calculation. The test results show that the model can supplement some unmodeled dynamics in the mechanism model, improve the model calculation accuracy and has the ability to implicitly understand different road adhesion conditions. In addition, the Euler integration is used to complete the discretization of the prediction model and design the model predictive control track tracking algorithm. The feedforward feedback control algorithm is designed to provide external input required by the prediction model in the horizontal control while realizing the longitudinal control of the vehicle, finally achieving more accurate trajectory tracking control effect that is more in line with the actual driving environment. The co-simulation results of Carsim / Simulink show that the method achieves accurate output of different road attachment coefficients, synchronously enhances the intelligent automotive trajectory tracking control accuracy and stability, and has good horizontal and longitudinal coordination control.

Key words: intelligent vehicle, trajectory tracking, data-driven modeling, model predictive control