汽车工程 ›› 2024, Vol. 46 ›› Issue (11): 1937-1951.doi: 10.19562/j.chinasae.qcgc.2024.11.001

• •    下一篇

面向自动驾驶的大模型对齐技术:综述

唐小林1,甘露1,李国法1,李克强2,褚文博3,4,5()   

  1. 1.重庆大学机械与运载工程学院,重庆 400044
    2.清华大学车辆与运载学院,北京 100084
    3.国汽(北京)智能网联汽车研究院有限公司,北京 100176
    4.重庆理工大学机械检测技术与装备教育部工程研究中心,重庆 400054
    5.西部科学城智能网联汽车创新中心(重庆)有限公司,重庆 401329
  • 收稿日期:2024-01-23 修回日期:2024-03-26 出版日期:2024-11-25 发布日期:2024-11-22
  • 通讯作者: 褚文博 E-mail:chuwenbo@wicv.cn
  • 基金资助:
    国家重点研发计划(2022YFB2503205);国家自然科学基金(52372377);重庆市自然科学基金(CSTB2023NSCOJOX0003);智能绿色车辆与交通全国重点实验室开放基金课题(KFZ2409)资助

Large Model Alignment Technology for Autonomous Driving: A Review

Xiaolin Tang1,Lu Gan1,Guofa Li1,Keqiang Li2,Wenbo Chu3,4,5()   

  1. 1.College of Mechanical and Vehicle Engineering,Chongqing University,Chongqing 400044
    2.School of Vehicle and Mobility,Tsinghua University,Beijing 100084
    3.China Intelligent and Connected Vehicles (Beijing) Research Institute Co. ,Ltd. ,Beijing 100176
    4.Engineering Research Center of Mechanical Testing Tech. and Equip. Ministry of Education,Chongqing University of Technology,Chongqing 400054
    5.Western China Science City Innovation Center of Intelligent and Connected Vehicles (Chongqing) Co. ,Ltd. ,Chongqing 401329
  • Received:2024-01-23 Revised:2024-03-26 Online:2024-11-25 Published:2024-11-22
  • Contact: Wenbo Chu E-mail:chuwenbo@wicv.cn

摘要:

随着Transformer注意力机制的出现,以GPT为代表的通用基础大模型实现了智能的“涌现”,给自动驾驶迈向更高级别发展带来了曙光。受限于传统从头预训练方式需要大规模、高质量、多样性自动驾驶数据和高昂训练成本的困扰,“大模型+对齐技术”范式衍生。对齐技术作为通用基础大模型与自动驾驶之间的纽带,通过微调或提示工程等定制化方式,可高效、专业地解决自动驾驶领域内的工程性问题。对齐技术已是大模型在垂直领域发展的研究热点,但缺乏系统研究成果。基于此,本文首先对自动驾驶发展与大模型技术进行概述,从而衍生出对齐技术。然后,分别从微调和提示工程两个角度进行综述,系统化梳理并剖析各分类技术的结构或性能特点,同时给出实际的应用案例。最后,基于现有研究提出了对齐技术的研究挑战与发展趋势,为促进自动驾驶迈向更高级别发展提供参考。

关键词: 自动驾驶, 大模型, 综述, 对齐技术, 微调, 提示工程

Abstract:

With the emergence of the Transformer attention mechanism, general-purpose large models represented by GPT have achieved the "emergence" of intelligence, bringing a dawn to the advancement towards higher levels of autonomous driving. Limited by the traditional from-scratch pre-training approach, which requires large-scale, high-quality, diverse autonomous driving data and incurs high training cost, the "large model + alignment technology" paradigm has been derived. As a bridge between general-purpose large models and autonomous driving, alignment technology, through customization methods such as fine-tuning or prompt engineering, achieves efficient and professional solutions to engineering problems within the field of autonomous driving. Alignment technology has become a hot research topic in the development of large models in vertical fields, but it lacks systematic research results. Based on this, this article firstly provides an overview of the development of autonomous driving and large model technology, thereby deriving alignment technology. Then, it reviews from the perspectives of fine-tuning and prompt engineering, systematically reviewing and analyzing the structure or performance characteristics of each classification technology, while providing actual application cases. Finally, based on existing research, the research challenges and development trends of alignment technology are proposed, offering references for promoting the advancement towards higher level of autonomous driving development.

Key words: autonomous driving, large model, review, alignment technology, fine-tuning, prompt engineering