汽车工程 ›› 2025, Vol. 47 ›› Issue (6): 1144-1154.doi: 10.19562/j.chinasae.qcgc.2025.06.013

• • 上一篇    

基于交互多模型的智能汽车环境感知信息统一融合方法研究

贾鑫(),李松霖,佘远昇,洪峰   

  1. 吉林大学,汽车底盘集成与仿生全国重点实验室,长春 130025
  • 收稿日期:2024-09-17 修回日期:2025-04-05 出版日期:2025-06-25 发布日期:2025-06-20
  • 通讯作者: 贾鑫 E-mail:jiaxin@jlu.edu.cn
  • 基金资助:
    第二十七届中国科协年会学术论文。吉林省自然科学基金(SKL202302014);国家重点研发计划项目(2023YFB2504500)

Research on Environmental Perception Information Unified Fusion Method of Intelligent Vehicle Based on Interactive Multiple Models

Xin Jia(),Songlin Li,Yuansheng She,Feng Hong   

  1. Jilin University,National Key Laboratory of Automotive Chassis Integration and Bionics,Changchun 130025
  • Received:2024-09-17 Revised:2025-04-05 Online:2025-06-25 Published:2025-06-20
  • Contact: Xin Jia E-mail:jiaxin@jlu.edu.cn

摘要:

针对当前智能汽车环境感知系统进行多传感信息融合时不同传感器往往分阶段融合、难以均衡发挥单一传感器精度优势和多源信息冗余优势的问题,提出了一种基于交互多模型的对象级并行结构多传感信息统一融合方法。对象级融合具有良好的模块化以及封装性,并行结构能够充分利用信息冗余优势,交互多模型可以统一高效融合多源数据,弥补单一传感器的局限性。在对多源传感器数据时空对齐基础上,引入最邻近法和DS证据理论实现多传感器信息关联,并基于交互多模型进行动态统一融合。进行了实车搭载毫米波雷达和视觉系统环境感知试验,结果表明本方法能够有效提升目标车辆感知跟踪的可靠性和稳定性,提高了系统的适应能力。

关键词: 智能汽车, 环境感知, 对象级融合, 并行滤波, 交互多模型

Abstract:

For the problem that current multi-sensor information fusion in intelligent vehicle environmental perception systems often involves phased fusion of different sensors, making it difficult to balance the accuracy advantages of individual sensors and the redundancy advantages of multi-source information, an object-level parallel-structured unified multi-sensor information fusion method based on the interacting multiple model (IMM) is proposed in the paper. Object-level fusion has excellent modularity and encapsulation. The parallel structure can fully utilize information redundancy advantages, and the interacting multiple models enable unified and efficient fusion of multi-source data, compensating for the limitation of individual sensors. After spatiotemporal alignment of multi-source sensor data, the nearest neighbor method and DS evidence theory are used to achieve multi-sensor information association, and then dynamic unified fusion based on the interacting multiple models is conducted. Real-vehicle experiments are conducted using millimeter-wave radar and a vision system for environment perception. The results show that the proposed method effectively improves the reliability and stability of target vehicle perception and tracking, enhancing the adaptability of the system.

Key words: intelligent vehicle, environment perception, object-level fusion, parallel filtering, interacting multiple models