1 |
LIU Z, ZHANG W, ZHAO F. Impact, challenges and prospect of software-defined vehicles[J]. Automotive Innovation 2022(5): 180-194.
|
2 |
李宝磊, 吕丹桔, 张钦虎, 等. 基于多元优化算法的路径规划[J]. 电子学报, 2016, 44(9): 2242-2247.
|
|
LI B L, LV D J, ZHANG Q H, et al. Path planning based on multiple optimization algorithm [J]. Acta Electronica Sinica, 2016, 44(9): 2242-2247.
|
3 |
SARIFF N B, BUNIYAMIN N. An overview of autonomous mobile robot path planning algorithms[C].Student Conference on Research and Development, Shah Alam: IEEE, 2006: 183-188.
|
4 |
MAC T T, COPOT C, TRAN D T, et al. A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization[J]. Applied Soft Computing, 2017, 59:68-76.
|
5 |
HAN J, SEO Y. Mobile robot path planning with surrounding point set and path improvement[J]. Applied Soft Computing, 2017, 57: 35-47.
|
6 |
HENKEL C, BUBECK A, XU W. Energy efficient dynamic window approach for local path planning in mobile service robotics[J]. IFAC-PapersOnLine, 2016: 32-37.
|
7 |
ZHONG S, ZHAO Y, GE L, et al. Vehicle state and bias estimation based on unscented kalman filter with vehicle hybrid kinematics and dynamics models[J]. Automotive Innovation, 2023(6):571-585.
|
8 |
刘军, 冯硕, 任建华. 移动机器人路径动态规划有向D*算法[J]. 浙江大学学报(工学版), 2020, 54(2): 291-300.
|
|
LIU J, FENG S, REN J H. Path dynamic planning of mobile robot based on directed D* algorithm [J]. Journal of Zhejiang University (Engineering and Technology), 2020, 54(2): 291-300.
|
9 |
许万, 杨晔, 余磊涛, 等. 一种基于改进RRT*的全局路径规划算法[J]. 控制与决策, 2022, 37(4): 829-838.
|
|
XU W, YANG Y, YV L T, et al. A global path planning algorithm based on Improved RRT* [J]. Control and Decision, 2022, 37(4): 829-838.
|
10 |
BOROUJENI Z, GOEHRING D, ULBRICH F, et al. Flexible unit A-star trajectory planning for autonomous vehicles on structured road maps[C]. 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Vienna: IEEE, 2017: 7-12.
|
11 |
聂枝根, 王万琼, 赵伟强. 基于轨迹预瞄的智能汽车变道动态轨迹规划与跟踪控制[J]. 交通运输工程学报, 2020, 20(2): 151-164.
|
|
NIE Z G, WANG W Q, ZHAO W Q. Lane change dynamic trajectory planning and tracking control of Intelligent vehicle based on trajectory preview [J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 151-164.
|
12 |
CHEN J Y, ZHAN W, TOMIZUKA M. Autonomous driving motion planning with constrained iterative LQR [J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(2): 244-254.
|
13 |
SANG H Q, YOU Y S, SUN X J, et al. The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations[J]. Ocean Engineering, 2021: 108709.
|
14 |
YUAN C C, WENG S F, SHEN J, et al. Research on active collision avoidance algorithm for intelligent vehicle based on improved artificial potential field model[J]. International Journal of Advanced Robotic Systems, 2020, 17(3): 1-10.
|
15 |
RENY Y, SONG X R, GAO S. Research on path planning of mobile robot based on improved A* in special environment[C]. Proc. of the 3rd International Symposium on Autonomous Systems. Shanghai: IEEE, 2019: 12-16.
|
16 |
SHANG E, DAI B, NIE Y, et al. A guide-line and key-point based A-star path planning algorithm for autonomous land vehicles[C]. Proc. of the 23rd International Conference on Intelligent Transportation Systems. Beijing: IEEE Press, 2020, 17.
|
17 |
张韬, 项祺, 郑婉文, 等. 基于改进A*算法的路径规划在海战兵棋推演中的应用[J]. 兵工学报, 2022, 43(4): 960-968.
|
|
ZHANG T, XIANG Q, ZHENG W W, et al. Application of path planning based on improved A* algorithm in naval battle simulation [J]. Acta Ordnance Engineering, 2022, 43(4): 960-968.
|
18 |
孔继利, 张鹏坤, 刘晓平. 双向搜索机制的改进A*算法研究[J]. 计算机工程与应用, 2021, 57(8): 231-237.
|
|
KONG J L, ZHANG P K, LIU X P. Research on improved A* algorithm of bidirectional search mechanism [J]. Computer Engineering and Applications, 2021, 57(8): 231-237.
|
19 |
岳高峰, 张萌, 沈超, 等. 移动机器人导航规划的双向平滑A-star算法[J]. 中国科学:技术科学, 2021, 51(4): 459-468.
|
|
YUE G F, ZHANG M, SHEN C, et al. Bidirectional smoothing A-star algorithm for navigation planning of mobile robots [J]. Science in China: Technical Sciences, 2019, 51(4): 459-468.
|
20 |
齐款款, 李二超, 毛玉燕. 改进A*算法融合自适应DWA的移动机器人动态路径规划[J]. 数据采集与处理, 2023, 38(2): 451-467.
|
|
QI K K, LI E C, MAO Y Y. Dynamic path planning of mobile robot based on improved A* algorithm and adaptive DWA [J]. Data Acquisition and Processing, 2023, 38(2): 451-467.
|
21 |
迟旭, 李花, 费继友. 基于改进A*算法与动态窗口法融合的机器人随机避障方法研究[J]. 仪器仪表学报, 2021, 42 (3): 132-140.
|
|
CHI X, LI H, FEI J Y. Research on robot random obstacle avoidance method based on the fusion of improved A* algorithm and dynamic window method [J]. Chinese Journal of Scientific Instrument, 2021, 42 (3): 132-140.
|
22 |
刘子豪, 赵津, 刘畅, 等. 基于改进A*算法室内移动机器人路径规划[J]. 计算机工程与应用, 2021, 57 (2): 186-190.
|
|
LIU Z H, ZHAO J, LIU C, et al. Indoor mobile robot path planning based on improved A* algorithm [J]. Computer Engineering and Applications, 2021, 57 (2): 186-190.
|
23 |
LI Z, WEI L. Adaptive artificial potential field approach for obstacle avoidance path planning[C]. 2014 Seventh International Symposium on Computational Intelligence and Design. Hangzhou: IEEE, 2014: 429-432.
|
24 |
黄开启, 王赛赛, 叶涛, 等. 模糊改进的人工势场法机器人局部路径规划[J].组合机床与自动化加工技术, 2019 (8):63-66,70.
|
|
HUANG K Q, WANG S S, YE T, et al. Fuzzy improved artificial potential field method [J]. Robot Local Path Planning Combination Machine Tools and Automatic Processing Technology, 2019(8): 63-66, 70.
|
25 |
WANG Y, CAO X, HU Y. A trajectory planning method of automatic lane change based on dynamic safety domain[J]. Automotive Innovation, 2023(6): 466-480.
|
26 |
LI G, ZHANG X, GUO H, et al. Real-time optimal trajectory planning for autonomous driving with collision avoidance using convex optimization[J]. Automotive Innovation, 2023(6): 481-491.
|
27 |
LIU T, SHEN Y, WANG K. Path tracking control for autonomous truck with dual modular chassis[J]. Automotive Innovation, 2023(6): 558-570.
|
28 |
REN Y Y, ZHAO H W, LI X S, et al. Study on vehicle track model in road curved section based on vehicle dynamic characteristics[J]. Mathematical Problems in Engineering, 2012: 359-367.
|
29 |
BISWAS K, KAR I. On reduction of oscillations in target tracking by artificial potential field method[C]. 2014 9th International Conference on Industrial and Information Systems (ICIIS). Gwalior: IEEE, 2014:1-6.
|