汽车工程 ›› 2025, Vol. 47 ›› Issue (5): 859-874.doi: 10.19562/j.chinasae.qcgc.2025.05.007

• • 上一篇    下一篇

基于自抗扰控制的燃料电池供气系统协同控制研究

付佩1,张化喜1,蔡旭2,兰子剑1,刘青山1,陈轶嵩1()   

  1. 1.长安大学汽车学院,西安 710064
    2.岚图汽车科技有限公司,武汉 430056
  • 收稿日期:2024-09-10 修回日期:2024-11-06 出版日期:2025-05-25 发布日期:2025-05-20
  • 通讯作者: 陈轶嵩 E-mail:chenyisong_1988@163.com
  • 基金资助:
    国家重点研发计划“政府间国际科技创新合作”重点专项(2021YFE0192900);国家自然科学基金青年科学基金(52302427);陕西省自然科学基础研究计划(2023-JC-QN-0464)

Research on Collaborative Control of Fuel Cell Gas Supply System Based on Auto-disturbance Rejection Control

Pei Fu1,Huaxi Zhang1,Xu Cai2,Zijian Lan1,Qingshan Liu1,Yisong Chen1()   

  1. 1.School of Automobile,Chang’an University,Xi’an  710064
    2.LanTu Automobile Technology Co. ,Ltd. ,Wuhan  430056
  • Received:2024-09-10 Revised:2024-11-06 Online:2025-05-25 Published:2025-05-20
  • Contact: Yisong Chen E-mail:chenyisong_1988@163.com

摘要:

发展氢燃料电池汽车是我国推进“双碳”战略目标的关键举措之一。质子交换膜燃料电池 (PEMFC) 发动机系统,作为燃料电池汽车的核心动力源,展现出非线性、强耦合性和时滞性等复杂特性。这些特性使得 PEMFC 系统在应对汽车加速、爬坡等多变工况下的复杂功率需求时面临诸多挑战,特别是在系统气体供给的精准控制和系统响应的动态调节方面。气体供给的流量和压力对 PEMFC 的输出性能具有决定性影响,不当的气体供给不仅会降低电堆效率,甚至可能导致电堆损坏或失效,从而严重影响系统的整体性能和使用寿命。因此,优化气体供给系统,实现精准控制,是提升 PEMFC 系统性能和延长其使用寿命的关键所在。本文从建立 PEMFC 供气系统模型出发,深入分析氧气过量比、气体压力和气体压差等关键运行参数对于系统输出性能的影响;针对 PEMFC 系统氧气过量比、阴极压力以及两极气体压差采用非线性自抗扰控制算法 (ADRC) 进行三者协同控制研究,并将其与比例—积分—微分 (PID) 控制器进行对比。在PID控制下氧气过量比超调量最大可达1,而在ADRC控制下,氧气过量比超调量仅为0.2左右,达到稳态时间大约在0.1 s,PID控制下则在1 s 左右;PID 控制算法下的阴极气体压力在负载电流突变后,超调量在0.08 bar左右且波动较大,在2 s内达到稳定值,而在 ADRC 控制算法下,阴极气体压力能够在0.8 s内达到稳定值,且超调量远小于 PID 控制算法;在PID控制下两级气体压差超调量最大可达到0.15 bar且波动幅度较大,达到稳定时间较长,但在ADRC控制器下能够快速且稳定地达到设定值0.2 bar且波动幅度较小。结果表明,在负载电流和排氢动作等扰动因素下,ADRC 控制器具有更好的解耦性、鲁棒性和稳定性。

关键词: 燃料电池, 供气系统, PID, 自抗扰控制, 协同控制

Abstract:

The development of hydrogen fuel cell vehicle is one of the important measures to realize the “Double carbon” strategic goal in our country. As the main power source of fuel cell vehicle, proton exchange membrane fuel cell (PEMFC) system has nonlinear, strong coupling and time-delay characteristics. Those characteristics make PEMFC system have many difficulties when it is faced with complex power demand under various conditions like vehicle acceleration and climbing, especially in terms of precise control of gas supply and dynamic regulation of system response. The flow rate and pressure of gas supply play a decisive role in the output performance of PEMFC. Improper gas supply can lead to low efficiency of the stack and even damage or failure of the stack, and then affect the overall performance and service life of the system. Therefore, accurate gas supply system by optimizing the gas supply system is the key to improve the performance and extend the service life of PEMFC. Based on the establishment of a gas supply system model for PEMFC, in this paper the influence of key operating parameters such as oxygen excess ratio, gas pressure and gas pressure difference on the output performance of the system is analyzed. The synergetic control of oxygen excess ratio, cathode pressure and bipolar gas pressure difference in PEMFC system using nonlinear active disturbance rejection control (ADRC) algorithm is researched, which is then compared with those under the proportional integral derivative (PID) controller. Under PID control, the maximum overshoot of the oxygen excess ratio can reach 1, while under ADRC control, the overshoot only around 0.2, and the time to reach steady state is approximately 0.1 seconds, compared to around 1 seconds under PID control. After a sudden change in load current, the overshoot of the cathode gas pressure under the PID control algorithm is around 0.08 with large fluctuations, reaching a stable value within 2 seconds. Under the ADRC control algorithm, the cathode gas pressure can reach stable value within 0.8 seconds, with an overshoot much smaller than the PID control algorithm. Under PID control, the overshoot of the two-stage gas difference can reach up to 0.15 with large fluctuations and longer time to reach stability, but under the ADRC controller, it can quickly and stably reach the set value of 0.2 bar with smaller fluctuations. The results show that the ADRC controller has better decoupling, robustness and stability under the disturbance factors of load current and hydrogen displacement action.

Key words: fuel cell, gas supply system, PID, auto-disturbance rejection control, cooperative control