底盘&动力学&整车性能专题2022年
电子机械制动系统(electro-mechanical brake system, EMB)采用电控纯机械制动技术,可实现多种主动安全控制功能,具有结构精简、响应迅速,能够对车轮制动力矩进行独立精确控制等优势。为全面梳理EMB系统的发展现状,明确其未来技术走向,本文首先介绍了EMB的组成架构,分析了EMB典型结构型式的优缺点并确定了相关内容的主要研究方向。然后从夹紧力控制和传感器故障诊断两个层面分别对国内外的研究进展展开综述;分析了夹紧力控制算法的发展历程及未来研究重点,对比了3种典型夹紧力控制算法的试验效果;接着介绍了传感器故障诊断的具体类型及作用,通过定量化的指标分析不同故障诊断算法的实际控制效果。最后对EMB系统所面临的问题及未来发展趋势进行了分析和展望,指明了进一步的研究可以集中在夹紧力控制和传感器故障诊断等算法准确性和鲁棒性的提高、EMB与线控底盘集成控制技术的协调控制以及EMB对整车稳定性和舒适性的影响等方面。
为了改善分布式驱动电动汽车在低附着路面行驶、高速转向等极限工况下的主动安全性,本文提出了一种基于预测控制的动力学集成控制方法。首先,为了均衡预测模型的建模精度与控制器的计算负担,通过分段仿射将非线性横摆动力学模型进行简化,进而建立了混杂系统预测模型。其次,分析了多时变参数系统的失稳机理,将系统发生分岔现象后极易失稳的工况定义为极限工况,统一了低附着、高速等不同极限工况下的车辆稳定性判别方法,制定了控制模式的切换机制。然后,提出了基于鲁棒混杂模型预测控制算法的动力学集成控制策略,系统地考虑了极限工况下的车速变化与轮胎非线性侧偏特性,协同优化了车辆的驱动防滑性能、横摆稳定性等安全性指标。处理器在环试验表明,提出的集成控制策略能够满足低附着路面行驶与高速转向工况的控制需求,显著提高了车辆在极限工况下的主动安全性。
基于Isight优化平台,集成Sculptor网格变形算法和CFD仿真技术,开发了多设计参数和多优化目标的汽车整车空气动力学形体优化方法。在给定的车型尺寸约束下,基于比亚迪汉EV低风阻形体,研究了7个外轮廓参数对风阻的影响,使风阻降低4.2 counts;进一步,采用该形体优化方法对电动尾翼进行空气动力学优化,研究多目标空气动力学参数最优形体组合,终于获得整车风阻降低6 counts且后轴升力减小52 counts的电动尾翼最优形体与姿态。最后通过风洞试验验证形体优化方法的有效性与可靠性。
车载传感器为智能汽车提供了丰富的环境感知信息,然而,在电控悬架控制算法中,车辆所感知的路面信息尚未能被充分利用,造成车辆动力学控制效果不佳。本文以半主动悬架高性能预瞄控制问题为研究主题,提出了一种变步长模型预测控制(VSL-MPC)算法。该算法根据实时车速和双目相机采集的路面信息来确定预瞄控制步长,使得纳入控制算法中的路面感知信息能够更准确地反映路面特征,有助于半主动悬架在更恰当的时刻对悬架阻尼特性进行调节,能够实现更理想的悬架决策控制。利用双目相机对真实道路开展路面信息采集,引入半主动悬架系统最优性能界限作为性能评价基准,建立4种基于模型预测控制的半主动悬架仿真模型,仿真对比结果表明,驶过连续减速带和井盖冲击等典型城市路面特征时,所提出的VSL-MPC算法控制下的簧载质量垂向加速度与最优性能界限的差距仅为0.72和2.33 dB,相比传统预瞄MPC算法的4.31和4.46 dB、传统无预瞄MPC算法的4.04和4.74 dB具有显著提升,新算法能有效提升半主动悬架的动力学性能。
针对现有车辆运动状态估计算法严重依赖动力学模型精度且在大的质心侧偏角工况下准确性难以保障的问题,本文提出了一种基于混合神经网络的车辆运动状态估计算法。通过分析车辆本身的动力学基本特性,设计了适合于车辆运动状态估计的HNN混合神经网络架构,实现了车辆运动状态的深度学习估计。基于多个标准工况组成的数据集与典型实车测试工况进行了网络训练与测试验证。结果表明,相比于传统算法,本算法基于神经网络实现了精准的无动力学模型的汽车运动状态估计,提高了估计精度,且对路面附着系数变化具有鲁棒性。
车辆底盘横纵向稳定性控制是车辆安全的重要方面之一。针对车辆在稳定区域内横纵向参数特征,基于动态区域的稳定性分析和相应的稳定性控制器设计了横纵向协同稳定控制方法。首先,基于车辆传统基础稳定域建立了稳定性分析方法;其次,构建了适用于不同车辆工况的动态稳定域,使得稳定域无需针对不同的转向角和车速等重新估计;在此基础上,设计了稳定限幅控制;最后,以滑模面为稳定域边界设计了一种动态滑模控制器,使车辆状态始终维持稳定状态。通过Matlab/Simulink与CarSim的联合仿真,在高速转向和双车道变道场景中验证所提出的横纵向稳定控制方法的有效性。
为解决车轮双轴疲劳试验周期长、花费大的问题,提出了一种新的车轮双轴疲劳加速试验方法。以双轴载荷作用下车轮关键位置应变测试结果为基础,围绕车轮内部应力呈现的显著旋转周期特性、应力周期性变化幅值与外部载荷强度之间的线性关系,以及双轴载荷比例对车轮主应力方向的显著影响,在损伤等效原则基础上将比例相近的双轴载荷进行合并和缩减。通过试验验证了这一车轮双轴疲劳加速试验方法的可行性和合理性,运用该方法可大幅缩短测试周期,降低试验花费。
为实现车辆在实际加减速行驶工况下路面不平度的准确识别,提出了一种考虑车辆加速度、基于增广卡尔曼滤波算法的路面识别方法。以车辆纵向加速度作为已知输入,车身垂向振动和俯仰振动响应作为观测向量,设计增广卡尔曼滤波观测器估计路面不平度信息;求取固定位移窗长度内的国际平整度指数,实现了对路面的等级分类。仿真结果表明在典型非匀速工况、城市运行工况和制动工况下,所提出的方法对路面不平度的识别精度和对路面等级分类的准确性,明显高于一般的增广卡尔曼滤波算法,能有效识别未知输入路面。
为提高商用车的紧急避撞性能,采用了转向和制动联合避撞方式。而针对半挂汽车列车在紧急转向时容易失稳的问题,设计了考虑防止侧翻和横摆失稳的非线性模型预测控制器,并在紧急避撞场景的不同载荷和不同速度工况进行仿真验证。鉴于该控制器实时性能的不足,以其为跟踪性能的基准,设计了考虑质心侧偏角约束的线性时变模型预测控制算法,在满足避撞轨迹跟踪精度要求条件下,改善算法实时性。最后,制作了缩小版的半挂汽车列车试验车,进行紧急避撞工况的轨迹跟踪验证。结果表明,所设计的控制算法能准确跟踪目标轨迹,满足实际应用需求。
针对车辆紧急制动失稳状态下4个车轮均出现较大滑移而不能从车轮转速反映纵向车速的问题,提出一种与滑移控制器相结合的纵向车速估计方法。该方法能直接影响车轮滑移控制逻辑,保证4个车轮中始终存在一个车轮处于弱制动力控制状态且保持转速稳定变化,从而在紧急制动工况下能较准确地估计出纵向车速。在高/低附着路面的直行和转向工况下仿真的结果验证了滑移控制器的制动效能和纵向车速估计算法的鲁棒性。
使用车载角速度传感器测量获得的横摆角速度,存在噪声干扰大、量测值滞后等问题。为了提高车辆横摆角速度估计的精确性,本文中设计了一种基于可靠指标传感器融合(reliability indexed sensor fusion,RISF)多源传感信息融合的估计算法。首先,使用自适应容积卡尔曼滤波算法对横摆角速度传感器量测值进行滤波;然后,建立考虑道路侧倾角的自行车模型,使用车载轮速、前轮转角和横向加速度传感器信号,建立动力学递推公式,并使用阿克曼定理的计算结果作为状态更新值,估计出横摆角速度;最后,设计基于RISF的自适应卡尔曼滤波框架融合传感器滤波值和模型估计值。实车道路测试结果表明:该方法可估计出道路侧倾角,RISF融合值比单一传感器滤波的估计效果更好。
为解决越野车在复杂路面行驶过程中平顺性较差的问题,本文中在某型越野车原悬架系统上加装空气弹簧,形成新型复合型悬架结构。首先为探究越野车悬架系统的振动机理,通过对越野车空气弹簧和原悬架系统进行理想化结构分析,构建出了空气弹簧与螺旋弹簧相并联的复合型悬架系统模型;然后针对越野车行驶要求,提出了一种新型工作模式切换控制策略,并验证其有效性,完善了复合型悬架的控制系统;最后,将复杂路面作为复合悬架工作工况,以车身垂向加速度、悬架动行程和轮胎动变形作为评价指标,分析了复杂路面对复合悬架越野车平顺性和道路友好性的影响。结果表明:在复杂路面下,装复合型悬架系统的越野车比传统越野车有更好的平顺性,并有效解决了正常行驶下空气弹簧的损耗问题。
本文利用车辆行驶信息大数据平台实地采集了山西地区重型半挂牵引车的行驶数据。利用主成分分析、聚类分析和马尔科夫法构建了山西地区的重型半挂牵引车行驶工况。对C-WTVC、CHTC-TT、山西工况的燃油消耗量分别进行仿真,仿真结果验证了行驶工况构建的准确性。基于山西行驶工况对整车传动系统进行优化匹配,优化传动系统后的车辆发动机工作在经济区域的概率增加,百公里油耗比基础车型减少0.94 L。实车测试的油耗数据证实了构建的行驶工况曲线能更好地表征山西地区重型半挂牵引车的行驶特性。本文所提出的基于山西工况的整车动力系统匹配的仿真方法,有助于设计出适合山西地区的重型半挂牵引车的高效动力总成系统。
本文中提出了一种考虑气囊橡胶Payne效应和热力学等效刚度阻尼滞回特性的膜式空气弹簧非线性动刚度模型,以解决空气弹簧动刚度非线性建模难题,并为气囊结构设计与材料选择提供理论依据。首先,通过示功试验对动刚度实部和虚部进行参数识别,表明在小振幅下,气囊橡胶Payne效应会引起动刚度的增大,并验证了不同振幅和频率激励下模型的正确性。接着,从振幅和频率两个维度给出了各解耦变量贡献度变化趋势的物理解释。结果显示,气囊橡胶的Payne效应使动刚度实部随振幅增大而减小,虚部随振幅增大呈现先增大后逐渐减小的趋势;气体刚度和由热交换产生的等效阻尼会使动刚度实部随频率升高逐渐增大,虚部随频率升高先增大后减小。最后给出了一个反映橡胶气囊动刚度贡献率的膜式空气弹簧新的评价指标,可直接表征空气弹簧低幅动态性能和结构设计与材料选择的优劣。试验表明,该值主要随振幅增加明显下降,橡胶气囊在低振幅时产生的刚度不可忽视。
为采用人-椅接触面的体压分布来表征汽车座椅的振动舒适性,在6种不同幅值的低频垂向激励下,以12名受试者为对象,进行汽车座椅振动舒适性主客观试验,以获得体压分布指标。对振动加速度和体压分布的测试结果进行分析,以提取加权加速度均方根值、平均压力均值、最大压力均值和平均压力变化率与法向力变化率的均方根值等客观评价指标。运用非参数统计方法对主客观指标进行相关分析,结果表明,平均压力均值、最大压力均值与主观不舒适性评分的相关性较弱(β=0.26, 0.10),而平均压力变化率和法向力变化率的均方根值与主观不舒适性评分具有较强的相关性(β=0.83, 0.85)。最后利用史蒂文斯幂定律对主客观参量进行关联性分析,结果表明,与加权加速度均方根值指标相比,平均压力变化率和法向力变化率的均方根值与主观不舒适性评分均具有较高的关联性(R2> 99.0%),可作为体压分布评价指标来表征汽车座椅的振动舒适性。
为减少电动汽车制热能耗,基于热泵系统制热性能试验,提出热泵系统制热在-20~5 ℃环境温度范围内均存在制热性能分区,制定了PTC在制热低效区提前介入的热泵PTC耦合制热策略,利用AMESim搭建的系统模型进行仿真并与传统策略进行了对比研究。与采用6 000 r/min转速热泵辅助278.95 W PTC制热功率相比,采用转速4 700 r/min热泵辅助462.11 W PTC制热综合能耗低6.4%,二者均能使车内温度稳定在24 ℃。相比于单一热泵制热,采用PTC提前介入的热泵PTC耦合制热策略具有加热快、能耗低、转速低等优势,-10 ℃环境温度下车内目标温度为20 ℃时,调节过程中能耗最多降低9.4%,稳定后降低2.8%。采用PTC提前介入策略时压缩机转速应尽可能接近高效区临界转速,此策略在不改变系统结构的基础上可明显提升制热效率和舒适性。
利用车辆动力学响应进行地面分类是越野智能汽车的关键技术之一。本文中提出了结合地面不平整度特征和力学特征进行越野地面分类的方法,对沙地、土路、水泥路和雪地进行分类。本方法中选取等效地面轮廓和车身垂向加速度作为地面不平整度特征,选取行驶阻力和轮速波动作为力学特征,设计了基于LSTM模型的越野地面分类器,对自行采集的车辆越野行驶数据集进行训练与测试,结果表明,分类正确率达到95.5%;最后,使用HMM模型实现了分类后处理,解决了分类结果在连续数据上跳变的问题,使该算法在连续越野数据上的地面分类正确率从88.44%提高到90.13%。
为提高轮胎有限元仿真精度和更好满足高精度虚拟送样要求,提出一种轮胎逆向剖析方法;首先通过3D扫描获得轮胎断面,然后对轮胎进行断面切割,获取一段具有一定厚度的轮胎断面,并将其摆放在3D扫描结果的打印图纸上,使两者的断面轮廓很好贴合,再次扫描得到轮胎材料分布图。接着利用所获得的实际轮廓和从轮胎生产厂家取得的设计轮廓,通过绕轮心旋转获得3D有限元模型,进行静态工况的有限元仿真和实物轮胎试验;最后仿真对比了不同胎压下设计轮廓和实际轮廓的静态力学特性。结果表明:实际轮廓轮胎的径向刚度、侧向刚度和纵向刚度仿真精度分别达到99.2%、97.9%和98.2%,比设计轮廓分别提升了4.3、4.6和7.4百分点,但两种轮廓轮胎的扭转刚度差异很小;不同胎压下设计轮廓的轮胎各向刚度均大于实际轮廓,且两种轮廓轮胎的各向刚度皆随胎压的升高而增大。
本文旨在对某重型半挂牵引车燃油经济性的改善进行研究。首先,对后视镜进行了优化,风洞试验结果风阻系数降低了0.012。接着,利用遗传算法对传动系统参数进行优化。并通过改进电控硅油风扇的控制策略,降低了发动机附件的功率消耗,Simulink/Crusie联合仿真和转鼓试验台测试的结果:C-WTVC循环工况油耗分别降低了1.7%和2%。最后,实车道路试验结果表明,优化后的车辆百公里综合油耗降低1.14 L,相当于3%。
因不平路面动载荷而产生明显波动的轮速会导致车轮滑移率的跳变,进而会频繁触发以滑移率为控制目标的驱动防滑控制系统(ASR),因此,须对不平路面进行识别并优化控制。针对沟坎路面,本文提出以滑移率和整车侧倾角变化为观测量,采用门限逻辑法实现路面识别。对于连续不平路面,结合穿越计次法与能量法进行路面不平状况判别,以滑移率与路面附着系数所包围的封闭面积作为特征值进行路面条件判定,根据识别结果,采用ASR阈值调整控制,减小车轮悬空导致的打滑现象及主动制动不均产生的非理想横摆。结果表明,所提算法能够快速准确识别不平路面特性,ASR主动制动时长缩短18.8%,减少了在不平路面行驶的动力损失。