[1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature,2008,451(7179):652-657.
[2] OTA Y, TANIGUCHI H, NAKAJIMA T, et al. Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging[J]. IEEE Trans. Smart Grid,2011,3(1):559-564.
[3] CAMCI F, OZKURT C, TOKER O, et al. Sampling based state of health estimation methodology for Li-ion batteries[J]. J. Power Sources,2015,278:668-674.
[4] ZHAO Y, CHOE S Y. A highly efficient reduced order electrochemical model for a large format LiMn2O4/Carbon polymer battery for real time applications[J]. Electrochimica Acta,2015,164:97-107.
[5] PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. state and parameter estimation[J]. J. Power Sources,2004,34(2):277-292.
[6] ZHANG C, JIANG J, ZHANG W, et al. Estimation of state of charge of lithium-ion batteries used in HEV using robust extended Kalman filtering[J]. Energies,2012,5(4):1098-1115.
[7] XIONG R, HE H, SUN F, et al. Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach[J]. IEEE Trans. Veh. Technol.,2013,62(1):108-117.
[8] ZHANG F, LIU G, FANG L, et al. Estimation of battery state of charge with observer: applied to a robot for inspecting power transmission lines[J]. IEEE Trans. Ind. Electron.,2012,59(2):1086-1095.
[9] POP V, REGTIEN P, NOTTEN P, et al. Battery management systems[M]. Springer Science,2008.
[10] GUO Z, QIU X, HOU G, et al. State of health estimation for lithium ion batteries based on charging curves[J]. J. Power Sources,2014,249:457-462.
[11] DAI H, WEI X, SUN Z. A new SOH prediction concept for the power lithium-ion battery used on HEVs[C]. In Proc. Vehicle Power and Propulsion Conf.,2009,1649-1653.
[12] KIM I S. A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer[J]. IEEE Trans. Power Electron.,2010,25(4):1013-1022.
[13] CHAOUI H, GOLBON N, HMOUZ I, et al. Lyapunov-based adaptive state of charge and state of health estimation for lithium-ion batteries[J]. IEEE Trans. Ind. Electron.,2015,62(3):1610-1618.
[14] SANTHANAGOPALAN S, ZHANG Q, Kumaresan K, et al. Parameter estimation and life modeling of lithium-ion cells[J]. J. Electrochem. Soc.,2008,155(4):A345 -A353.
[15] PLOEHN H J, RAMADASS P, WHITE R E. Solvent diffusion model for aging of lithium-ion battery cells[J]. J. Electrochem. Soc.,2004,151(3):A456-A462.
[16] SUN B, JIANG J, ZHENG F, et al. Practical state of health estimation of power batteries based on Delphi method and grey relational grade analysis[J]. J. Power Sources,2015,282:146-157.
[17] LIU D, PANG J, ZHOU J, et al. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression[J]. Microelectron. Rel.,2013,53(6):832 -839.
[18] LIN H T, LIANG T J, CHEN S M. Estimation of battery state of health using probabilistic neural network[J]. IEEE Trans. Ind. Inf.,2013,9(2):679 -685.
[19] HE Z, GAO M, MA G, et al. Online state-of-health estimation of lithium-ion batteries using dynamic Bayesian networks[J]. J. Power Sources,2014,267:576-583.
[20] NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. J. Power Sources,2013,239:680-688.
[21] LI H, PAN D, CHEN C L P. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine[J]. IEEE Trans. Syst., Man, Cybern., Syst.,2014,44(7):851-862.
[22] ZHANG C, WANG L Y, LI X, et al. Robust and adaptive estimation of state of charge for lithium-ion batteries[J]. IEEE Trans. Ind. Electron.,2015,62(8):4948-4957. |