[1] AMMOUN S, NASHASHIBI F, LAURGEAU C. An analysis of the lane changing manoeuvre on roads: the contribution of inter-vehicle cooperation via communication[C]. Intelligent Vehicles Symposium,2007 IEEE. [2] 杨刚,张东好,李克强,等.基于车车通信的车辆并行协同自动换道控制[J].公路交通科技,2017(1):120-129. [3] 张荣辉,游峰,初鑫男,等.车车协同下无人驾驶车辆的换道汇入控制方法[J].中国公路学报,2018,31(4):184-195. [4] LI B, ZHANG Y M, FENG Y H, et al. Balancing computation speed and quality: a decentralized motion planning method for cooperative lane changes of connected and automated Vehicles[J]. IEEE Transactions on Intelligent Vehicles,2018:1-1. [5] RIOS-TORRES J, MALIKOPOULOS A. A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps[J]. IEEE Transactions on Intelligent Transportation Systems,2017,18(5):1066-1077. [6] 李珣,曲仕茹,夏余.车路协同环境下多车道车辆的协同换道规则[J].中国公路学报,2014,27(8):97-104. [7] CAO W J, MUKAI M, KAWABE T, et al. Cooperative vehicle path generation during merging using model predictive control with real-time optimization[J]. Control Engineering Practice,2015,34:98-105. [8] MORADI-PARI E, MAHJOUB H N, KAZEMI H, et al. Utilizing model-based communication and control for cooperative automated vehicle applications[J]. IEEE Transactions on Intelligent Vehicles,2017,2(1):38-51. [9] 谭云龙.快速路合流区微观交通仿真车道变换模型研究[D].长春:吉林大学,2014. [10] HEESEN M, BAUMANN M, KELSCH J, et al. Investigation of cooperative driving behaviour during lane change in a multi-driver simulation environment[C]. Human Factors: a view from an integrative perspective, Proceedings HFES Europe Chapter Conference Toulouse,2012. [11] NIE J, ZHANG J, DING W, et al. Decentralized cooperative lane-changing decision-making for connected autonomous vehicles[J]. IEEE Access,2016,4:9413-9420. [12] 杨龙海,赵顺,徐洪.基于改进优化速度函数的跟驰模型研究[J].交通运输系统工程与信息,2017,17(2):41-46. [13] LI Ye, WANG Hao, WANG Wei, et al. Complexity and applicability analysis among OVM, GFM and FVDM models[J]. Journal of Southeast University (English Edition),2015(3):424-426. [14] KATRAKAZAS C, QUDDUS M, CHEN W H, et al. Real-time motion planning methods for autonomous on-road driving: state-of-the-art and future research directions[J]. Transportation Research Part C Emerging Technologies,2015,60:416-442. [15] LI B, SHAO Z. A unified motion planning method for parking an autonomous vehicle in the presence of irregularly placed obstacles[J]. Knowledge-Based Systems,2015,86:11-20. [16] 李玮,高德芝,段建民.智能车辆自由换道模型研究[J].公路交通科技,2010,27(2):119-123. [17] CHEN X Q, ZHANG S C, LI L, et al. Adaptive rolling smoothing with heterogeneous data for traffic state estimation and prediction[J]. IEEE Transactions on Intelligent Transportation Systems,2018:1-12. [18] SIDDIEG A M A E. Implementation of the extended dantzig-wolfe method[J]. Mathematical Theory & Modeling,2013,3(2):12-29. [19] PUNZO V, BORZACCHIELLO M T, CIUFFO B. On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data[J]. Transportation Research Part C,2011,19(6):1243-1262. |