汽车工程 ›› 2024, Vol. 46 ›› Issue (9): 1576-1586.doi: 10.19562/j.chinasae.qcgc.2024.09.005

• • 上一篇    

考虑复杂扰动的轻型商用车路径跟踪混合控制方法

胡杰1,2,3(),张志凌1,2,3,钟杰锋1,2,3,赵文龙1,2,3,郑嘉辰1,2,3,周思龙1,2,3,屈紫君4   

  1. 1.武汉理工大学,现代汽车零部件技术湖北省重点实验室,武汉 430070
    2.武汉理工大学,汽车零部件技术湖北省协同创新中心,武汉 430070
    3.新能源与智能网联车湖北工程技术研究中心,武汉 430070
    4.东风汽车股份有限公司商品研发院,武汉 430000
  • 收稿日期:2024-03-16 修回日期:2024-04-20 出版日期:2024-09-25 发布日期:2024-09-19
  • 通讯作者: 胡杰 E-mail:auto_hj@163.com
  • 基金资助:
    湖北省科技重大专项(2022AAA001)

A Hybrid Control Strategy for Light Commercial Vehicle Path Tracking Considering Complex Disturbances

Jie Hu1,2,3(),Zhiling Zhang1,2,3,Jiefeng Zhong1,2,3,Wenlong Zhao1,2,3,Jiachen Zheng1,2,3,Silong Zhou1,2,3,Zijun Qu4   

  1. 1.Wuhan University of Technology,Hubei Key Laboratory of Modern Auto Parts Technology,Wuhan 430070
    2.Wuhan University of Technology,Auto Parts Technology Hubei Collaborative Innovation Center,Wuhan 430070
    3.Hubei Technology Research Center of New Energy and Intelligent Connected Vehicle Engineering,Wuhan 430070
    4.Commercial Product R&D Institute,Dongfeng Automobile Co. ,Ltd. ,Wuhan 430000
  • Received:2024-03-16 Revised:2024-04-20 Online:2024-09-25 Published:2024-09-19
  • Contact: Jie Hu E-mail:auto_hj@163.com

摘要:

外界扰动、模型不确定性和参数摄动等复杂扰动直接影响智能车辆路径跟踪控制的精度和行驶安全性。商用车的载重特性使其在行驶过程中受到的复杂扰动更为明显,为提升自动驾驶商用车路径跟踪精度和平顺性,提出一种路径跟踪混合控制方法。首先,建立鲁棒性强的基于扩张观测器的滑模控制器和变化平稳的增量式LQR控制器,其中增量式LQR的参数使用粒子群算法整定。然后,使用模糊控制器将两者相结合,根据车速和横向误差调整权重系数,在提升系统鲁棒性的同时削弱抖振。最后,进行了仿真分析和实车试验。试验数据表明,SMC+LQR具备较好的控制效果,能应对外界的复杂扰动。

关键词: 路径跟踪, 复杂扰动, 滑模控制, 扩张观测器, 增量式LQR, 模糊算法

Abstract:

Complex disturbances such as external interference, model uncertainty and parameter perturbation directly affect the accuracy and driving safety of intelligent vehicle path tracking control. Commercial vehicles are more susceptible to complex disturbances during driving because of their load characteristics. A hybrid path tracking control method is proposed in order to improve the accuracy and smoothness of commercial vehicle path tracking. Firstly, a robust sliding mode controller based on extended observer and an incremental LQR controller with stable changes are established. Particle swarm optimization algorithm is used to tune the parameters of the incremental LQR. Then, in order to improve robustness while weakening chattering, a fuzzy controller is used to adjust weight coefficient between them according to vehicle speed and lateral error. Finally, simulation analysis and vehicle experiments are conducted. The experimental data shows that SMC+LQR has good control performance to cope with complex external disturbances.

Key words: path tracking, complex disturbances, sliding mode control, extended state observer, incremental LQR, fuzzy algorithm