汽车工程 ›› 2021, Vol. 43 ›› Issue (11): 1662-1672.doi: 10.19562/j.chinasae.qcgc.2021.11.012
收稿日期:
2021-06-17
修回日期:
2021-07-24
出版日期:
2021-11-25
发布日期:
2021-11-22
通讯作者:
胡杰
E-mail:auto_hj@163.com
基金资助:
Jie Hu(),Yongsheng Gong,Shijie Cai,Tengfei Huang
Received:
2021-06-17
Revised:
2021-07-24
Online:
2021-11-25
Published:
2021-11-22
Contact:
Jie Hu
E-mail:auto_hj@163.com
摘要:
为提高车流量的预测精度,本文中从外部特征、时间特征和空间特征的角度综合考虑了多因素对车流量的影响,提出了一种基于多源数据和时空预测的车流量预测方法。在外部特征方面,深入探索了日期、天气和兴趣点特征对车流量影响;在时间特征方面,提出了基于时间卷积网络(TCN)的时间序列预测框架,并以近邻周期和日周期为基线分别建立时间预测模型;在空间特征方面,提出了基于图表示学习的空间特征提取方法,实现了相邻路网节点间的空间相关性特征提取。结果表明,与多种现有预测方法相比,该方法在提升预测精度的同时改善了中长时车流量预测性能。
胡杰,龚永胜,蔡世杰,黄腾飞. 基于多源数据的车流量时空预测方法[J]. 汽车工程, 2021, 43(11): 1662-1672.
Jie Hu,Yongsheng Gong,Shijie Cai,Tengfei Huang. A Spatio-Temporal Prediction Method of Traffic Flow Based on Multi-Source Data[J]. Automotive Engineering, 2021, 43(11): 1662-1672.
1 | ZHU J, LI X, JIN P, et al. MME-YOLO: multi-sensor multi-level enhanced YOLO for robust vehicle detection in traffic surveillance[J]. Sensors, 2021, 21(1): 27. |
2 | 邬群勇, 胡振华, 张红. 基于多源轨迹数据的城市交通状态精细划分与识别[J]. 交通运输系统工程与信息, 2020, 20(1): 83-90. |
WU Q Y, HU Z H, ZHANG H. Fine division and identification of urban traffic status based on multi-source trajectory data[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 83-90. | |
3 | 杨兆升, 朱中. 基于卡尔曼滤波理论的交通流量实时预测模型[J]. 中国公路学报, 1999, 3: 63-67. |
YANG Z S, ZHU Z. A real time traffic volume prediction model based on the Kalman filtering theory[J]. China Journal of Highway and Transport, 1999, 3: 63-67. | |
4 | 聂佩林, 余志, 何兆成. 基于约束卡尔曼滤波的短时交通流量组合预测模型[J]. 交通运输工程学报, 2008, 5: 86-90. |
NIE P L, YU Z, HE Z C. Constrained Kalman filter combined predictor for short-term traffic flow[J]. Journal of Traffic and Transportation Engineering, 2008, 5: 86-90. | |
5 | DENG M J, QU S R. Fuzzy state transition and Kalman filter applied in short-term traffic flow forecasting[J]. Computational Intelligence and Neuroscience, 2015, 2015: 1-7. |
6 | CAI L G, ZHANG Z C, YANG J J, et al. A noise-immune Kalman filter for short-term traffic flow forecasting[J]. Physica A, 2019: 536. |
7 | ZHOU T, JIANG D Z, LIN Z Z, et al. Hybrid dual Kalman filtering model for short-term traffic flow forecasting[J]. IET Intelligent Transport Systems, 2019, 13(6): 1023-1032. |
8 | MARCO L, MATTEO B, PAOLO F. Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 871-882. |
9 | HU W B, YAN L P, LIU K Z, et al. A short-term traffic flow forecasting method based on the hybrid PSO-SVR[J]. Neural Process Lett, 2016, 43(1): 155-172. |
10 | GE W, CAO Y, DING Z M, et al. Forecasting model of traffic flow prediction model based on multi-resolution SVR[C]. ICIAI 2019 Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence, Suzhou, China, 2019. |
11 | CASTRO N, JEONG Y S, JEONG M K, et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications, 2008, 36(3): 6164–6173. |
12 | 樊汉勤. 基于机器学习技术的交通流预测模型研究与实现[D]. 成都: 西南交通大学, 2017. |
FAN H Q. Research and implementation of traffic flow prediction model based on machine learning[D]. Chengdu:Southwest Jiaotong University, 2017. | |
13 | LIU H J, MA L F, WANG Z D, et al. An overview of stability analysis and state estimation for memristive neural networks[J]. Neurocomputing, 2020, 391: 1-12. |
14 | JÜRGEN S. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117. |
15 | YU Z Q, AMIR M A, ADNAN Z, et al. An overview of neuromorphic computing for artificial intelligence enabled hardware-based hopfield neural network[J]. IEEE Access, 2020, 8: 67085-67099. |
16 | XIN R Y , ZHANG J, SHAO Y T. Complex network classification with convolutional neural network[J]. Tsinghua Science and Technology, 2020, 25(4): 447-457. |
17 | ABDI J, MOSHIRI B, SEDIGH A K. Comparison of RBF and MLP neural networks in short-term traffic flow forecasting[C]. 2010 International Conference on Power, Control and Embedded Systems, Allahabad, India, 2010. |
18 | 任艺柯. 基于改进的LSTM网络的交通流预测[D]. 大连: 大连理工大学, 2019. |
REN Y K. Traffic flow prediction based on improved LSTM network[D].Dalian: Dalian University of Technology, 2019. | |
19 | ROBAIL Y. SRNET: a shallow skip connection based convolutional neural network design for resolving singularities[J]. Journal of Computer Science and Technology, 2019, 34(4): 924-938. |
20 | DIAZ G I, FOKOUE-NKOUTCHE A, NANNICINI G, et al. An effective algorithm for hyperparameter optimization of neural networks[J]. IBM Journal of Resarch and Development, 2017, 61: 1-11. |
21 | HUANG T F, MA Y, ZHOU Y Z, et al. A review of combinatorial optimization with graph neural networks[C]. 2019 5th International Conference on Big Data and Information Analytics, Kunming, Yunnan, China, 2019 |
22 | BRYAN P, RAMI A R, STEVEN S. DeepWalk: online learning of social representations[C]. KDD' 14: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2014. |
23 | ADITYA G, JURE L. Node2Vec: scalable feature learning for networks[C]. KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 2016. |
24 | TANG J, QU M, WANG M Z, et al. LINE: large-scale information network embedding[J]. Computer Science, 2015. |
25 | WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]. KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 2016. |
26 | 刘道广.基于深度学习的道路短时交通流量预测研究[D]. 绵阳: 西南科技大学, 2020. |
LIU D G. Study on prediction of short-term road traffic flow based on deep learning[D]. Mianyang: Southwest University of Science and Technology, 2020. | |
27 | ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9), 3848-3858. |
28 | ZHANG J B, ZHENG Y, QI D K, et al. Predicting citywide crowd flows using deep spatio-temporal residual networks[J]. Artificial Intelligence, 2018, 259: 147-166. |
29 | ZHOU C, LU H M, XIANG Y, et al. GeohashTile: vector geographic data display method based on geohash[J]. ISPRS International Journal of Geo-Information, 2020, 9(418). |
30 | FENG X, FENG Q, LI S, et al. Wavelet-based Kalman smoothing method for uncertain parameters processing: applications in oil well-testing data denoising and prediction[J]. Sensors, 2020, 20(16):4541. |
31 | KAZEMI S M, GOEL R, EGHBALI S, et al. Time2Vec: learning a vector representation of time[J]. 2019. arXiv:1907.05321v1 [cs.LG] 11 Jul 2019. |
32 | BAI S J, KOLTER J Z, VLADLEN K. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv:1803.01271v2 [cs.LG] 19 Apr 2018. |
33 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [J]. arXiv, 2017. |
[1] | 高泽, 楚遵康, 石稼晟, 林滏, 饶卫雄, 余海燕. 基于图网络的汽车零部件应力场快速预测方法研究[J]. 汽车工程, 2024, 46(1): 170-178. |
[2] | 刘卫国,项志宇,刘锐,李国栋,王子旭. 基于深度学习的端到端车辆运动规划方法研究[J]. 汽车工程, 2023, 45(8): 1343-1352. |
[3] | 赵嘉豪,齐志权,齐智峰,王皓,何磊. 基于轮胎特征点的并行大型车辆朝向角计算[J]. 汽车工程, 2023, 45(6): 1031-1039. |
[4] | 陈妍妍,王海,蔡英凤,陈龙,李祎承. 基于检测的高效自动驾驶实例分割方法[J]. 汽车工程, 2023, 45(4): 541-550. |
[5] | 兰凤崇,陈继开,陈吉清,蒋心平,李子涵,潘威. 实车数据驱动的锂电池剩余使用寿命预测方法研究[J]. 汽车工程, 2023, 45(2): 175-182. |
[6] | 李琳辉,张鑫亮,付一帆,连静,马家旭. 基于TC-YOLOv7算法的可见光与红外后融合检测研究[J]. 汽车工程, 2023, 45(12): 2280-2290. |
[7] | 张小俊,奚敬哲,史延雷,袁安录. 面向路侧视角目标检测的轻量级YOLOv7-R算法[J]. 汽车工程, 2023, 45(10): 1833-1844. |
[8] | 胡杰,李源洁,耿號,耿黄政,郭雄,易红卫. 基于深度学习的汽车故障知识图谱构建[J]. 汽车工程, 2023, 45(1): 52-60. |
[9] | 胡杰,徐博远,熊宗权,昌敏杰,郭迪,谢礼浩. 基于多尺度掩码分类域自适应网络的跨域目标检测算法[J]. 汽车工程, 2022, 44(9): 1327-1338. |
[10] | 毕贵红,谢旭,蔡子龙,骆钊,陈臣鹏,赵鑫. 动态条件下基于深度学习的锂电池容量估计[J]. 汽车工程, 2022, 44(6): 868-878. |
[11] | 王大方,杜京东,曹江,张梅,赵刚. 面向自动驾驶数据生成的风格迁移网络研究[J]. 汽车工程, 2022, 44(5): 684-690. |
[12] | 郭景华,何智飞,罗禹贡,李克强. 人机混驾环境下基于深度学习的车辆切入轨迹预测[J]. 汽车工程, 2022, 44(2): 153-160. |
[13] | 蒋渊德,朱冰,赵祥模,赵健,郑兵兵. 面向自动驾驶汽车测试的交通车辆交互过程建模[J]. 汽车工程, 2022, 44(12): 1825-1833. |
[14] | 高振海,温文昊,唐明弘,张建,陈国迎. 基于混合神经网络的汽车运动状态估计[J]. 汽车工程, 2022, 44(10): 1527-1536. |
[15] | 张绍伟,朱大炜,翟光照. 基于深度学习的座椅抗挥鞭伤性能预测[J]. 汽车工程, 2022, 44(10): 1600-1608. |
|