汽车工程 ›› 2022, Vol. 44 ›› Issue (10): 1494-1502.doi: 10.19562/j.chinasae.qcgc.2022.10.003

所属专题: 智能网联汽车技术专题-规划&控制2022年

• • 上一篇    下一篇

基于高效NMPC算法的无人车轨迹跟踪控制研究

王宏伟(),刘晨宇,李磊,张昊天   

  1. 东北大学秦皇岛分校控制工程学院,秦皇岛  066004
  • 收稿日期:2022-04-10 修回日期:2022-05-14 出版日期:2022-10-25 发布日期:2022-10-21
  • 通讯作者: 王宏伟 E-mail:wanghw0819@163.com
  • 基金资助:
    国家自然科学基金(61903072);中央高校基本科研业务费专项资金项目(N2223029)

Research on Trajectory Tracking Control of Unmanned Vehicle Based on Efficient NMPC Algorithm

Hongwei Wang(),Chenyu Liu,Lei Li,Haotian Zhang   

  1. School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao  066004
  • Received:2022-04-10 Revised:2022-05-14 Online:2022-10-25 Published:2022-10-21
  • Contact: Hongwei Wang E-mail:wanghw0819@163.com

摘要:

本文针对无人车在复杂工况下,非线性程度增加和动力学约束导致的轨迹跟踪控制精度差和求解效率低的问题,提出一种高效的非线性模型预测控制(nonlinear model predictive control, NMPC)算法。首先考虑车辆模型的非线性因素,建立动力学和魔术轮胎模型,并将无人车终端状态整合到性能指标中,添加稳定性范围内多约束条件,通过障碍罚函数法处理非线性不等式约束,保证了求解过程的平滑性。然后为减轻求解非线性优化问题带来的计算负担,提出了一种新颖的连续/广义最小残差算法(improved continuation/generalized minimal residual,improved-C/GMRES),与传统的C/GMRES算法相比,通过引入连续增加的惩罚因子加快了数值计算的求解效率,降低算法的计算负担。最后通过Simulink和CarSim的联合仿真,在双移线工况和蛇行工况条件下验证跟踪精度和求解效率,结果表明与传统的C/GMRES方法相比,所提控制方法明显提升轨迹跟踪的控制精度和改善行驶稳定性,并加快数值求解效率。

关键词: 无人车, 轨迹跟踪, 非线性模型预测控制, improved-C/GMRES, 求解效率

Abstract:

In view of the lowering of the trajectory tracking accuracy and the solution efficiency caused by the increase of nonlinear degree and dynamic constraints of unmanned vehicles under complex working conditions, an efficient algorithm based on nonlinear model predictive control (NMPC) is proposed in this paper. Firstly, in consideration of the nonlinear factors of the vehicle model, the dynamic model and the magic formula tire model are established. A terminal state is integrated to the performance index. The multi-constraint conditions within the stability range are added, and barrier function method is used to solve nonlinear inequality constraints to ensure the smoothness of the solution process. Then in order to reduce the computational burden caused by solving nonlinear optimization problems, an improved continuous/generalized minimum residual (improved-C/GMRES) algorithm is proposed. Compared with the traditional C/GMRES algorithm, the continuously increasing penalty factor is introduced to speed up the numerical calculation efficiency and reduce the computational burden of the algorithm. Finally, based on the joint simulation platform of Simulink and Carsim, the trajectory tracking accuracy and solution efficiency are verified in double-shift line motion and serpentine motion. Simulation results show that compared with the traditional C/GMRES algorithm, the proposed algorithm can significantly improve the tracking accuracy and driving stability of trajectory tracking, and greatly accelerates the solution efficiency.

Key words: unmanned vehicle, trajectory tracking, nonlinear model predictive control, improved-C/GMRES, solution efficiency