汽车工程 ›› 2024, Vol. 46 ›› Issue (6): 1006-1014.doi: 10.19562/j.chinasae.qcgc.2024.06.007

• • 上一篇    下一篇

基于云端地图的智能网联商用车质量估计算法研究

张傲1,李淑艳1(),高博麟2,万科科1,周光3,曹通易3   

  1. 1.中国农业大学工学院,北京 100083
    2.清华大学车辆与运载学院,北京 100084
    3.深圳元戎启行科技有限公司,深圳 518033
  • 收稿日期:2024-01-10 修回日期:2024-02-24 出版日期:2024-06-25 发布日期:2024-06-19
  • 通讯作者: 李淑艳 E-mail:lishuyan@cau.edu.cn
  • 基金资助:
    河套深港科技创新合作区深圳园区项目(HZQB-KCZYZ-2021055);深圳元戎启行科技有限公司(HZQB-KCZYZ-2021055)

Research on Mass Estimation Algorithm of Intelligent and Connected Commercial Vehicle Based on Cloud Road Map

Ao Zhang1,Shuyan Li1(),Bolin Gao2,Keke Wan1,Guang Zhou3,Tongyi Cao3   

  1. 1.College of Engineering,China Agricultural University,Beijing  100083
    2.School of Vehicle and Mobility,Tsinghua University,Beijing  100084
    3.Shenzhen Deeproute. ai Co. ,Ltd. ,Shenzhen  518033
  • Received:2024-01-10 Revised:2024-02-24 Online:2024-06-25 Published:2024-06-19
  • Contact: Shuyan Li E-mail:lishuyan@cau.edu.cn

摘要:

整车质量是车辆动力学参数中的一个关键状态量。在辅助驾驶系统中,整车质量的准确估计对规划控制算法至关重要。传统的质量估计算法在同时估计车辆质量与道路坡度时面临挑战,尤其是坡度估计的误差可能严重影响质量估计的准确性。当前,云控平台提供了高精度的道路地图信息,为进一步优化质量估计算法提供了全新的思路。本研究基于云控平台的车云协同框架,设计了云控系统下的商用车质量估计系统架构。进而基于扩展卡尔曼滤波理论,并结合云端的道路地图信息,开发了商用车质量估计算法。通过将道路坡度视为已知参数而非变化的状态量对整车质量进行估计,并利用实车试验采集到的行驶数据进行了算法对比验证。试验结果表明,基于云端坡度信息的质量估计算法,在空载与满载工况下均能实现快速收敛,估计质量的绝对百分比误差在3%以内,相较于传统的同步估计车辆质量与道路坡度的算法,能够更快且更准确地收敛到车辆真实质量附近。

关键词: 智能网联汽车, 云控系统, 质量估计, 扩展卡尔曼滤波

Abstract:

Vehicle mass is a key state variable of vehicle dynamics parameters. In the driver assistance system, accurate estimation of the vehicle mass is important for the planning and control algorithms. Traditional mass estimation algorithms face challenges in estimating road slope and vehicle mass at the same time. In particular, the error of slope estimation may seriously affect the accuracy of mass estimation. Currently, the cloud control platform provides high-precision road map information, which provides a new idea for further optimizing the mass estimation algorithm. Based on the vehicle-cloud collaborative framework of the cloud control platform, the system architecture of commercial vehicle mass estimation under the cloud control system is designed in this paper. Then, based on the extended Kalman filter theory, combining with the road map information in the cloud, the commercial vehicle mass estimation algorithm is developed. The vehicle mass is estimated by taking the road slope as a known parameter rather than a variable state parameter, and the algorithm is compared and verified by the driving data collected by the real vehicle test. The experimental results show that the mass estimation algorithm based on cloud slope information can achieve fast convergence under no-load and full-load conditions, and the absolute percentage error of the estimated mass is within 3%. Compared with the traditional algorithm of simultaneous estimation of mass and slope, it can converge to the real mass of the vehicle faster and more accurately.

Key words: intelligent and connected vehicle, cloud control system, mass estimation, extended Kalman filtering